AD-A245 484 - ..
AR | @
NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

INVESTIGATING THE UTILITY OF COUPLING
COCOMO WITH A SYSTEM DYNAMICS
SIMULATION OF SOFTWARE DEVELOPMENT
by
Richard W. Smith

_ September, 1991
Thesis Advisor: Tarek K. Abdel-Hamid

Approved for public release; distribution is unlimited

92-02¢
TS

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS
UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution is unlimited.
2b DECLASSIFICATION/DOWNGRADING SCHEDULE
4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)
6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Naval Pustgraduate School (it applicable) Naval Postgraduate School
55
6c ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a NAME O~ FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
8c ADDRESS (City, State, and ZIP Code) '0 SOURCE OF FUNDING NUMBERS
Program tiement No Project Nu Task No WOrk Hmit ACCeysion
Number
11 TITLE {Include Security Classification)
INVESTIGATING THE UTILITY OF COUPLING COCOMO WITH A SYSTEM DYNAMICS SIMULATION OF
SOFTWARE DEVELOPMENT (UNCLASSIFIED)
12 PERSONAL AUTHOR(S) Smith, Richard W.
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (year, month, day) |15 PAGE COUNT
Master's Thesis From To September 1991 175

16 SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the otficial policy or pusition of the Department of Defense or the U.S.
Government.

17 COSATICODES 18 SUBJECT TERMS (continue on reverse If necessary and identify by block number)
FIELD GROuUP SUBGROUP “gst Estimation, Software Project Management, System Dynamies Simulation Model,
COCOMO

19 ABSTRACT (continue on reverse if necessary and identify by block number)

Coust estimation of software, in this era of budgetary constraints, is vitally important to the success or failure of a software project.
Although there are many cost estimation models available, cost overruns and late deliveries still persist.

Coupling the Constructive Cost Model (COCOMO) and the System Dynamics Model of Software Project Management can provide
4 twol o study project management over the life of a project, W use sensitivity analysis W enhance COCOMO’s cost driver set, and to
utilize an sutomated optimization system for software cost estimativn in a single or multi-project environment. This new type of model
credtes a means to study the multi-project environment and determine what the advantages and disadvantages are to sharing resources
between ditferent suftware projects.

Several ‘C’ programs were devetoped, that when interfaced and coupied with the system dynamics model, provide a tool w optimize
cost estimates 1n a two project environment. It also creates an environment to perform extensive sensitivity analysis for the enhancemem
af COCOMO’s cost driver set in the single and two project environment.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECUPRITY CLASSIFICATION

o NCCASSIE L UNUIMITED D SAME AS HLPOR] D DTIC USERS UNCLASSIFIED
22a NAME OF RESPONS!IBLE INDIVIDUAL 22b TELEPHONE (Include Area code) 22¢ OFFICE SYMBOL !
Tarek K. Abdel Hamid 1408) b46-2686 AS/AH 1
DD FORM 1473, 84 MAR %3 APR edition muy be used until exhausted SECURITY CLASSIFICATION OF THIS PACe

Allother editions are shsolete UNCLASSIFIED

Approved for public release; distribution is unlimited.

Investigating the Utility of Coupling COCOMO
with a System Dynamics
Simulation of Software Development

by
Richard W. Smith

Lieutenant, United States Navy
B.S., United States Naval Academy, 1982

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS
from the

NAVAL POSTGRADUATE SCHOOL
September 199

/. /
Author: M

I
7
= A 124

Richdrd W/ Smith
T Yo
Approved by: | - Ham,

Tarek K. Abdel-Hamid, Thesis Advisor

" Magdi Xamel, Second Reader

Ly

X
David R. Whipple, Chaitman
Department of Administratiye Sciences

ABSTRACT

Cost estimation of software, in this era of budgetary constraints, is vitally important
to the success or failure of a software project. Although there are many cost estimation
models available, cost overruns and late deliveries still persist.

Coupling the Constructive Cost Model (COCOMO) and the System Dynamics Model
of Software Project Management can provide a tool to study project management over the
life of a project, to use sensitivity analysis to enhance COCOMO’s cost driver set, and to
utilize an automated optimization system for software cost estimation in a single or multi-
project environment. This new type of model creates a means to study the multi-project
environment and determine what the advantages and disadvantages are to sharing
resources between different software projects.

Several ‘C’ programs were developed, that when interfaced and coupled with the
system dynamic model, provide a tool to optimize cost estimates in a two project
environment. It also creates an environment to perform extensive sensitivity analysis for

the enhancement of COCOMO'’s cost driver set in the single and two project environment.

| Accession For

p4
NTTS GRA&L .
— DTIZ TaR M
/g Uiirenouneod I
&z gust i rr et
. .]
) I e
,_Dj rrtieny/]
Avnilovility Cores
r., Aos Yo oanvfor T
Dist Spe-cial
11 !
PI\ I |

TABLE OF CONTENTS

I. INTRODUCTION
A. BACKGROUND
B. OBJECTIVES
C. THE RESEARCH QUESTION
D. SCOPE
E. METHODOLOGY

F. ORGANIZATION OF STUDY

II. SYSTEM ARCHITECTURE

A. INTRODUCTION

B. A DYNAMIC SIMULATION MODEL OF SOFTWARE
DEVELOPMENT

Cc. COCOMO MODEL

D. INTERFACING "C" PROGRAMS WITH DYNAMIC SIMJLATION
MODEL
1. SINGLE PROJECT ENVIRONMENT

2. TWO PROJECT ENVIRONMENT

ITI. SYSTEM OPERATION
A. BACKGROUND
B. SPECIAIL FEATURES

C. GETTING STARTED

iv

i1

14

18

22

Iv.
A.
V.
A.
B.

GETTING THE SYSTEM READY FOR USE

1. Installing the Software on Your Hard Disk

2. Installation with Hercules Monochrome Graphics
Card

OPERATING THE SYSTEM

1. Operating the System from Diskette

2. Operating the System from the Hard Disk

OPERATING IN THE SINGLE PROJECT ENVIRONMENT

1. Enter New Project

2. Load Project from Disk

OPERATING SYSTEM IN TWO PROJECT ENVIRONMENT

RESULTS AND REPORTS

TEST AND EVALUATION OF SYSTEM

PROJECT DEFINITION
1. Test 1
a. Basic COCOMO
b. Intermediate COCOMO
2. Test 2
3. Test 3

4. Experiment

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS
RECOMMENDATIONS FOR FUTURE RESEARCH

1. Refining the Current System

htd

29

29

30
30
30
31
32
33
41
44

47

49
49
50
51
53
57
58

62

69
69
73

73

2. Use of Current System for Sensitivity Analysis

Experiments« o 74

3. Determine Real World Advantages 74
APPENDIX A: MAIN.C+ « « « « « o o « o . 75
APPENDIX B: INPUT1.C« .« « « « « « « « o . 77
APPENDIX C: OUTPUT1.C C e e e e e e e e e e e e e e 106
APPENDIX D: INPUTZ2.C« « v v v v« « v e e 109
APPENDIX E: OUTPUT2.C+« « « « & « « o « « . 148
LIST OF REFERENCES C e e e e e e e e e e e e e e e e 163
INITIAL DISTRIBUTION LIST +« « « . . . 1lo4

vi

LIST OF TABLES

TABLE 4-1: BASIC COCOMO EQUATIONS
TABLE 4-2: INTERMEDIATE COCOMO EQUATIONS

TABLE 4-3: STAFF SIZE VS. COMMUNICATION OVERHEAD

vii

51

54

59

Figure

Figure
Figure

Figure

Figure

Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

3~-8:
3-9:

3-10

LIST OF FIGURES

Four Sub-systems of the Dynamic Simulation
Model

Complete System Architecture
Initialization of Programs Menu

Coupled Model Architecture for a Single
Project Environment

System Architecture for Two Project
Environment

Welcome Screen

Initialization of Programs Menu

Initial Menu for Single Project
Environment

Selection Menu for COCOMO Model

COCOMO Cost Driver Input Screen

Example of Cost Driver Menu

COCOMO MODE Selection Menu

COCOMO Input Display Screen

New Project Menu

:. Report Format Screen

Main Menu for Single Project Environment
Current List of Files Screen
Select COCOMO Model Menu

Saving Files Menu

viii

17

18

19

23
31

32

33

35

36

37

38

39

40

40

41

42

42

43

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

3-15:

Main Menu for Two Project Environment
Control Variable Questions

Input Display Screen

Trend in Effort over a Series of
ITterations

Schedule Trends over a Series of
Iterations

Effort Trends over a Series of Iterations
with Different Start Dates

Schedule Trends over a Series of Iterations
with Different Start Dates

Error Rate Trends

Error Rate Trends with Different Start

Dates

ix

44

46

50

65

65

66

66

67

67

I. INTRODUCTION

A. BACKGROUND

Cost estimation of software is one of the few areas in the
computer industry that has not progressed with the rapid
technological advances and growth experienced by the remainder
of the computer industry. Although extensive studies have
been completed and many cost estimation models developed,
there is still no evidence that the software industry can
accurately estimate the cost of a software project. Cost
overruns, late deliveries, poor reliability, and wuser
dissatigsfaction has created an atmosphere of distrust in cost
estimation models In a recent speech, for example, Air
Force General Bernard Randolph characterized software as the
"Achilles’ heel of weapons development" and continued later
stating, "On software schedules, we’ve got a perfect record;
We haven’t met one yet." (Kitfield, 1989, p. 29) A report from
the 101ST Congress summarized, "that in an increasingly
constrained budget environment greater controls must be
established to alleviate the continual cost overruns and
excessive cost growth of these systems." (Congress, 13989, pp.
1-2) 1In order to contend with these problems, cost estimation
studies were directed toward the understanding of the compl=zte

software development process, which included many management

issues. Although some progress has been made in the
understanding of this development process, the prcblems still
tend to persist. Studies have discovered that this, so
called, "Software Monster"” is as much a managerial problem as
a technical one (Schlender, 1989, p. 100). Meanwhile, the
demand for more reliable and more sophisticated software
continues to escalate with the increased dependence of
computers in everyday life (Abdel-Hamid, 1989, p. 1426).

Coupling an algorithmic model, such as a Constructive Cost
Model (COCOMO), and a Systems Dynamics Simulation Model of
Software Project Management may enhance the ability to provide
better cost estimations. A coupled computer based modeling
system can be used to efficiently and =ffectively study the
effects of altering various objective and subjective
management controlled variables on the cost and schedule
aspects of a software project. The modeling system can also
be used to repeat the same project simulation many times while
adjusting different parameters in an effort to determine the
variables that are most sensitive to the cost and schedule of
a single project.

Many organizations today utilize a matrix organizational
structure. In this type of organizational structure many
resources are shared by several different projects. The
coupled modeling system can create a means to simulate :two

projects in a shared resource environment that automatically

refines the cost and schedule estimates. It can also repeat

the simulation process many times while adjusting different
parameters not only to achieve optimization in estimation, but
also to determine the variables most sensitive to cost and

schedule estimates in a two project environment.

B. OBJECTIVES

Several models have been developed to provide cost
estimates for software development projects. The COCOMO model
has been one of the most widely studied and used models in
cost estimation. The System Dynamics Simulation Model of
software development has been developed to study the effects
of certain management policies on software project
development. These management polices are subjective in
nature and are difficult to define. The emphasis of this
thesis will focus on the development of a new kind of software
estimation model that combines an algorithmic model, COCOMO,
with a systems dynamic simulation model. It will initially
focus on single software development projects, but will also
include studies considering cost estimation in a two project
environment. Additionally, this thesis will investigate the
addition of management variables as a means to enrich the
current set of COCOMO cost drivers. The test cases presented
will be proéfs to ensure proper operation of the interfaces
between models. The experiment presented will be that of

limiting one specific resource variable between the two

projects and observing the process of automatic refinement of

cost estimates over a series of iterations.

C. THE RESEARCH QUESTION

The primary research question of this thesis is to
determine the advantages of coupling COCOMO with a dynamic
simulation model of software development. The other important
question of this thesis is whether the combined model would
enhance our ability to do sensitivity analysis and to
determine what, i1f any, approach is best for optimizing cost

estimations in a two project environment.

D. SCOPE

The scope of this thesis is to analyze the usefulness of
the composite model concept, and to investigate the utility
gained from coupling these two models in both the single and
two project environments. The scope of this thesis is not,

however, to improve cost accuracy.

E. METHODOLOGY

This thesis follows a series of logical steps in the
development and testing of a coupled modeling system. The
initial phase consists of designing a small "C" test program
to determiné the best possible interface between the program
and the simulation model. Once an interface is successful,
the second phase begins. It includes the development of a "C"

prcgram which will operate as a front-end system for the

simulation model and provide the COCOMO cost estimations for
effort and schedule. After completion of the program and the
interface is successful, testing must occur. The testing
includes baseline tests of program algorithms to ensure the
data being passed between programs is accurate. This phase of
testing includes testing the Basic COCOMO Model, the
Intermediate COCOMO Model, and nominal productivity
calculations.

The last phase includes the programming and testing of two
additional "C" programs. The first program is very similar to
the program previously developed. It also includes the front-
end system and the COCOMO cost estimations for effort and
schedule. The difference between the programs is that the
program from the previous phase was developed for a single
project environment and the latter provides for the same
requirements in the two project environment. After successful
completion of this program, a back-end program will be
developed to evaluate the results, provide adjustments where
neceasary, and create an automatic iterative loop process
which continually refines cost estimations.

The testing for this phase will include a simple test, as
above, to prove the accuracy of program algorithms, but will
also include an experiment. The experiment will consist of
several tests to determine the opportunity gained by creating
an iterative loop process for refinement of cost estimations

in a two project environment. In addition, it will also test

the ability of this type of modeling system to do extensive
sensitivity analysis by limiting certain shared variables and

observing the results under several different conditions.

F. ORGANIZATION OF STUDY

This chapter has discussed the general background and
themes which direct this study. The remaining chapters are
organized as follows. Chapter II discusses the architecture
of the system. This includes background discussions on the
dynamic simulation model, COCOMO and the design structure of
the integration between the two models. Chapter III describes
in-depth the operation of the system. Chapter IV discusses
the tests and experiments conducted in this thesis. The tests
will show the validity of the program algorithms and the
experiment will show the potential of wusing this coupled
mocdeling system. Chapter V discusses the conclusions and

recommendations attained from conducting this study.

II. SYSTEM ARCHITECTURE

A. INTRODUCTION

This system is a coupling of a series of "C" programs and
a dynamic simulation model to create an interactive, user-
friendly support tool for the purpose of studying and refining
cost estimation procedures while gaining a better
understanding of software development project management.
This chapter first discusses the background of the dynamic
simulation model and COCOMO. It then discusses, in detail,

the system integration between the two models.

B. A DYNAMIC SIMULATION MODEL OF SOFTWARE DEVELOPMENT

The Dynamic Simulation Model is part of an on going study
of software development project management dynamics. The
model focuses on four basic subsystems which integrate the
management process of software development as well as the
production-type functions that constitute the software
development life cycle (Abdel-Hamid, 1990, p. 21). The four
subsystems include: human resource management; software
production; controlling; and planning. The Dynamic Simulation
Model is unique in that it is able to integrate key management
related software development processes such as scheduling,

productivity, and staffing to derive implications and gain

knowledge about behavioral aspects of management in the
overall software development process. It is also unique in
its use of the feedback principles of system dynamics to
structure and clarify the complex web of dynamically
interacting variables. Figure 2-1 establishes the
interactions and relationships between each of the four
subsystems (Agan, 1990, p. 7).

The human resource management subsystem comprises the
hiring, training, assimilation, and transfer of the human
resource. In this subsystem, the work force is divided into
two types of employees, newly hired and experienced. Newly
added team members tend to be less productive than experienced
members. On the other hand, experienced members productivity
is reduced due to the training needs involved in assimilating
newly added members into the team. Employee turnover also
directly impacts project development. The larger the project
the greater the turnover rate. This corresponds with the
above productivity discussion of newly added members being
less productive. (Abdel-Hamid, 1980, p.22)

Figure 2-1 suggests "work force available" has a direct
bearing on the allocation of manpower among the different
software production activities in the Software Production
Subsystem. The primary software production activities are

development, quality assurance, rework and testing.

/ N producﬂon

/ /oo Tma;‘god Schedule ‘\ \

Controliing })/pk:\
NP - TN
remaining

Figure 2-1: Four Sub-systems of the Dynamic
Simulation Model

Quality assurance is used as a means of detecting errors
in development activities. Although some errors will elude
detection until the testing phase, errors detected through
quality assurance will be reworked. As progress is made, a
comparison of where the project is versus where it should be
is evaluated. This evaluation is a function of the control
activity in the Controlling Subsystem. Since software is an
intangible product during most of the development process and
there are no visible milestones to measure progress or
quality, the Controlling Subsystem contains some of the most
difficult problems a manager must solve. Therefore, the
Controlling Subsystem possibly has the greatest impact on this
entire system. As depicted in Figure 2-1, the Controlling

Subsystem directly effects the Planning Subsystem in the

quantification of "effort remaining” which indirectly impacts
both "schedule" and "work force needed"” to complete the
project. The "progress status" of the project reported back
to the human resource management subsystem directly effects
team productivity. In early stages of the project, team
members rely on the managers assessment of their overall
productivity as they are unable to perceive the productiveness
of the work force. Therefore, as the project nears
completion, the managers projected productivity gradually
ceases to influence the perceived productivity of the team as
it becomes a function of feedback determined by actual tasks
completed. (Abdel-Hamid, 1990, p. 23)

The Planning Subsystem is responsible for the initial
project estimates and, when necessary, the revised estimates
as each subsystem continues to effect the other until project
completion. For example, for a project perceived to be behind
schedule, a manager may hire additional employees, delay the
schedule, possibly a combination of the two, or do nothing
(At del-Hamid, 1990, p. 23).

The dynamic simulation environment of this model
concentrates on the managerial aspects of software development
and on the fundamental understanding of the software

development process.

10

C. COCOMO MODEL

The COnstructive COst MOdel or COCOMO is an algorithmic
model that is used to determine initial cost estimates in
software development effort and schedule. Initial cost
estimates of this model are a function of the estimated size
of the software product in source instructions. There are
three different versions of COCOMO which include Basic COCOMO,
Intermediate COCOMO, and Detailed COCOMQO. Basic COCOMO is an
algorithmic model that is effective for quick and rough order
of magnitude estimates of software costs. However, its
accuracy 1is 1limited because it does not account for
differences in hardware constraints, personnel quality and
experience, use of modern tools and techniques, and other
project attributes known to have a significant impact on
software costs. (Boehm, 1981, p. 58)

The intermediate COCOMO model increases the accuracy of
basic COCOMO by incorporating 15 cost drivers into the effort
and schedule calculations. These 15 cost drivers are grouped
into four categories: software product attributes, computer
attributes, personnel attributes, and project attributes. The
cost drivers are listed by category below:

e Product -Attributes
- Required Software
- Reliability

- Database Size
- Product Complexity

11

¢ Computer Attributes

- Execution Time Constraint

- Main Storage Constraint

- Virtual Machine Volatility

— Computer Turnaround Time
¢ Personnel Attributes

— Analyst Capability

- Applications Experience

- Programmer Capability

- Virtual Machine Experience

- Programming Language Experience
s Project Attributes

- Modern Programming Practices

- Use of Software Tools
- Required Development Schedule

Each of these cost drivers has an associated multiplying
factor used in the algorithmic calculations to determine, with
more accuracy, the overall effort and schedule costs of the
software development project. (Boehm, 1981, pp. 114-117)

The detailed version of COCOMO employs a three level
hierarchical decomposition of the software product whose cost
is to be estimated (Boehm, 1981, p. 347). It also uses effort
multipliers to determine the phase distribution of effort over
the life cycle. This version of COCOMO did not lend itself to
this coupled modeling system and, therefore, was not utilized.

In the .COCOMO environment there are three modes of
software development. They include the Organic Mode, the
Semidetached Mode, and the Embedded Mode. Distinguishing

between the modes is extremely important to prevent

12

overestimation or underestimation in the amount of effort
required for the project. (Boehm, 1984, p. 20)

The organic mode represents projects with relatively small
software teams who operate in a familiar, in-house
environment. The teams are comprised of people with extensive
experience in the organizations structure, in working with
related systems, and in understanding how the system will
contribute to the goals and objectives of the organization.
The Organic mode environment lends itself to a relatively
relaxed atmosphere that leads to higher productivity and
smaller diseconomy of scale on the project. (Boehm, 1981, p.
78)

The semidetached mode represents a project that falls
between the definition of the organic mode and the embedded
mode. The software project development teams are comprised of
a wide mixture of experienced and inexperienced people, some
of which understand how the system relates to the organization
and some that do not. (Boehm, 1981, p. 79)

The embedded mode represents a project which must operate
in a strongly coupled complex of hardware, software,
regulations and operational procedures. 1Initially, the team
consists of a small group of analysts, normally from ocutside
the organization, who complete product design. Then, again
from outside the organization, a large group of programm=zrs
are hired to complete the project. Because of rigid

requirements and the inability to make changes to these

13

requirements, the embedded mode environment tends to be less
productive and lead to greater diseconomies of scale. (Boehm,

1981, pp. 78-80)

D. INTERFACING "C" PROGRAMS WITH DYNAMIC SIMULATION MODEL

Interfacing between programs is accomplished through the
DOS operating system. DOS uses a series of system calls to
maneuver through the different processes within the batch
files. The DOS operating environment allows the system,
through the use of errorlevel calls and goto statements, to
execute and exit the different programs which are not
compatible due to software language limitations (Schildt,
1988, pp. 140-143).

Figure 2-2 represents a model of the total system
architecture which indicates the flows and controls of the
execution process of all the programs which makeup the coupled
model. The batch file, RUN.BAT is executed by typing RUN at
the DOS prompt and pressing enter,. This batch file
initializes the start up of the coupled model. Once the
system is initialized, the user must select the project
environment in which to operate. The batch file RUN.BAT first
calls the "Cﬁ program called MAIN.EXE as shown in Figure 2-2.
It is a small program that allows user access into either the
single project or two project environment. Figure 2-2 clearly
illustrates the distinct paths of the two env;ronments. After

the decision is made, the model automatically executes the

14

selected INPUT program. The INPUT program is used as a front-
end system for the dynamic simulation model and as an

algorithmic model to complete the COCOMO calculations.

ﬁﬁ*t*******ﬁ*t*******RUN_BAT*****************i**********

/* This is the main batch file which initiates the */
/* exacution of the coupled modeling system. */

@GECHO orr

del report.out

main
/* In the "C" language, the exit command with */
/* an associated number, such as exit (1), enables */
/* DOS’s ERRORLEVEL command to accept the exit */
/* number, (1) in this case, and call the next */
/* appropriate program using a GOTO statement. */
/* Several examples of this are shown in RUN.BAT, */
/* the batch file displayed below. The remainder */
/* of the "C" programs all interface with the DOS */
/* batch environment in the same manner.

IF ERRORLEVEL 1 GOTO two

inputl /* if exit (0), then execute */
IF ERRORLEVEL 1 GOTO done

GOTO roll

:roll

call execl.bat /* single project environment */
outputl

IF ERRORLEVEL 4 GOTO disp
IF ERRORLEVEL 3 GOTO prn

IF ERRORLEVEL 0 GOTO done

GOTO done

itwo

input2

IF ERRORLEVEL 1 GOTO done

GOTO run

irun

call exec2.bat /* two project environment */
IF ERRORLEVEL 1 GOTO done

output2

IF ERRORLEVEL GOTO disp

4
IF ERRORLEVEL 3 GOTO prn
IF ERRORLEVEL 1 GOTO run
IF ERRORLEVEL 0 GOTO done
:disp /* display on screen */
type report.ocut
GOTO done
:prn /* print results */
print report.out
GOTO done
:done

REM Program operation is complete.

RAARARRARAARAARRANRARRARRRARARRRAARANRRRAARRARARRARAAARRARRARAANRRNRANR

15

After the inputs and calculation are completed, the
program automatica'ly terminates, and the appropriate EXEC
batch file is called. The process of interfacing the program
to the batch file is discussed in the documentation portion of
the RUN.BAT source code displayed below and throughout the

source code of the actual programs included in the Appendices.

16

SRR £ 1VE203X3

% TIVO W3LSAS

X3 CLNdNI

A

TIVO N3LSAS

JUSLLILOJIALE
weloid om]|

DA'NIVN

1va'103x3

TIWO N3LSAS $

3X3 LLNdNI

|

1vE'NNY

TIVO NALSAS

JUBLILOJAUS
wejoud ejbuis

Complete System Architecture

Figure 2-2:

17

1. SINGLE PROJECT ENVIRONMENT
Figure 2-4 represents the processes and data flows
within the system architecture that occur in the single
project environment.
The single project environment is entered by user

selection from a menu which is displayed in Figure 2-3.

INITIALIZATION OF PROGRAMS
(Select one of the following)

1 - SINGLE Project Environment
2 - TWO Project Environment

Select environment you wish to use and press enter:

Figure 2-3: INITIALIZATION OF PROGRAMS MENU

Once selected, INPUT1.EXE, a "C" program designed to interface
with a single project environment version of the dynamic
simulation model, is executed. The INPUT1.EXE program enables
the user to utilize current parameters from a saved project,
change parameters from a previously saved project or
completely enter a new project. INPUT1.EXE has two basic
functions. The first is to complete COCOMO cost estimation
calculationé from the input variables entered by the user.
The second is to provide a front end system that allows the

user to easgily input or provide changes to the input variables

18

umord .0,
A 1LLNALNO

soupelu| xwees | | $ &
—E2 XNO'LTNS (—fmHodeiousufq |

XNQ d3H
T™VO ™o
E\Y
1300N

NOLIVINWIS

1VE'INONIS
; LNOINONIS
LAY B i

vr mam 4r mrm or wem 00 mem 08 mam 0n i o wem 00 mem on mem 1o med
1ve 1033

wg WALSAS
XNG'INONIS | 3X3 LLNdNI

Coupled Model Architecture for a Single
19

Project Environment

Figure 2-4:

of the dynamic simulation model. Once the inputs and
calculations are completed the entire list of variables are
saved to a file called SIMONE.DNX, which is displayed in the

input/output file below.

ARARRRARRARNRRARRRRARARAAAGTIMONE . DNKRRRA AR R AR AR AR AR AR AN AR AR RAR

/* This an example of the output file created by *~/
/* INPUT1.EXE and is the input for the simulation. */

RJBDSI=64000

TOTMD1=4113.23

TDEV1=302. 60

INUDST= 0.50

ADMPPS= 1.00

HIREDY=40.00

AVEMPT=1000000.00

TRPNHR= 0.20

ASIMDY=80.00

TNERPK=25.00 23.86 21.59 15.90 13.60 12.50

TPFMQA=0.150 0.150 0.150 0.150 0.150 0.150
0.150 0.150 0.150 0.150

DEVPRT= 0.80

DSIPTK=55.22

00 A"A3000000000

ARARRRRRARRARARRRRRRRARRARARRRARRRARRANARNRRRAARRRRRARARRRARANRRARAARR

OUTFILE.DNX is a binary file which is also saved at
this point in the process. This file is wutilized in
conjunction with OUTPUT1.EXE. This file passes COCCMO
estimated effort and schedule costs to the OUTPUT1.EXE program
for report processing. This file was developed to easily pass
variables directly from INPUT1.EXE to OUTPUT1.EXE while
keeping them completely separate from the dynamic simulation
model. After the files are saved, INPUT1.EXE automatically
terminates and returns to the DOS environment to call

EXEC1.BAT which initiates the dynamic simulation environment

20

project. This batch file works identical to the main batch
file in regard to the interfacing between programs and
processes of the dynamic simulation model. The batch file is

shown below and is modeled as an insert in Figure 2-4.
ARRRRRRRARRKARRRRARRARARRRAENXEC]L . BATARARAARRRAARRRARNRARRRAAA AR AR

/* This batch file represents the batch file that calls */
/* the simulation model for the single project environment. */

DYNEX SIMONE -d model.drs
IF ERRORLEVEL 4 GOTO ERROR
SMLT SIMONE ~-GO = -DTM =
REP SIMONE -T

GOTO EXIT

: ERROR

ECHO **% ERROR 1 **#*%
:EXIT

ARARERRARRARRRARRARARARRRARRAARARARARARAARARAAARRAAAAR R AR AR AR AR AR A K

DYNEX.EXE, SMLT.EXE, and REP.EXE are executable
programs which are programmed in the dynamo language and must
be present in the default directory for the System Dynamics
Model to operate. The SIMONE.DRS file, displayed below, is
used by the dynamoc report generator to write the required

output which will be displayed in SIMONE.OUT.
KRR RRAKRARARARRRARRRARRRRARITIMONE . DRSARAARAARARAARRARARNARRRANR A

/* This file works in conjunction with the dynex program */
/* and the dynamo report generator to produce the output */
/* file SIMONE.OUT. */

REPORT

TIME=MAXTIME,

FORMAT="1<,15>,16<", PICTURE="2ZZZZZV. 99"
"cumnd (", CUMMD, ") . "
FORMAT="1<, 15>, 16<", PICTURE="ZZZZZZV. 99"
" time(",TIME,")."

RARARARAARRARRRARRARAARARAARARAAARRRARARARARARARRRARRRRRARRRR AR RAARNRAAR

SIMONE.DNX, as discussed above and as shown in Figure
2-4, is the output file of INPUT1.EXE and contains all of the
input variables used by the simulation model. Figure 2-4 also
depic-cs the relationships of the primary components of the
dynamic simulation model and how they relate to both the
EXEC1.BAT and RUN.BAT batch files.

Upon completion of the dynamic simulation model and
EXEC1.BAT, the system again returns to the RUN.BAT batch file
where OUTPUT1.EXE is <called. This program utilizes
information from OUTFILE.DNX and SIMONE.OUT to allow the user
the ability to print or display the comparxisons between the
estimates and actual costs of effort and schedule. The
results are saved to a file called REPORT.OUT. This file
will remain resident on disk until the program is re-
initialized.

2. TWO PROJECT ENVIRONMENT

Figure 2-5 represents the processes and data flows
within the system architecture that occur in the two project
enviconment. The two project environment is entered by user
selection from a menu which is displayed after execution of
MAIN.EXE and is shown in Figure 2-4. Once selected,
INPUTZ2 .EXE, a "C" program designed to interface with a two
project environment version of the dynamic simulation model,
is executed. The INPUTZ2.EXE program enables the user to

utilize current parameters from saved projects, change

22

iVE'OMINIS

1va203x3a

%g WILEAS

| DA CINGNI

umoig .0,

IXITLNGLNO

: sowpe| 10WBUSD i b;w b
i URFQ L gpel XNOQLINS e MOdEH OWNUAQ |
;| XNOX3NAG XNOdIH |
P3USAST" malsas :
NOLLYINNIS :
—

Project

Two

System Architecture for

2-5:

Environment

Figure

23

parameters from previously saved projects or completely enter
new projects to complete two basic functions. The first is to
complete COCOMO cost estimation calculations from input
variables entered by the user for both projects, as discussed,
in the previous section. The second is to provide a front end
system that allows the user to easily input or provide changes
to the input variables for both projects in the dynamic
simulation model. Once the COCOMO calculations and inputs are
completed and the variables entered, the entire 1list of
variables are saved to a file called SIMTWO.DNX, which is

displayed in the input/output file below.

RRARRRARRARRARRARRRRARAGTIMINO . DNXARRARRARRRANRRNRRARARRAARRR

/* This an example of the output file created by */
/* INPUT2.EXE and is the input for the simulation. */

RJBDSI (1)=64000

RJBDSI (2)=64000

TOTMD1 (1) = 3593

TOTMD1 (2)= 3593

TDEV1(1l)= 348

TDEV1 (2)= 348

INUDST(1)= 0.50

INUDST(2)= 0.50

ADMPPS (1)= 1.00

ADMPPS (2)= 1.00

HIREDY (1)=40.00

HIREDY (2)=40.00

AVEMPT (1)=1000000.00

AVEMPT (2)=1000000.00

TRPNHR(1)= 0.20

TRPNHR (2)= 0.20

ASIMDY (1)=80.00

ASIMDY (2)=80.00

TNERP1=25.00 23.86 21.59 15.90 13.60 12.50

TNERP2=25.00 23.86 21.59 15.90 13.60 12.50

TPFMQ1=0.150 0.150 0.150 0.150 0.150 0.150
0.150 0.150 0.150 0.150 O

TPFMQ2=0.150 0.150 0.150 0.150 0.150 0.150
0.150 0.150 0.150 0.150 O

DEVPRT(1)= 0.80

DEVPRT (2)= 0.80

DSIPTK(1)=59.89

AR QOO000O0000000000O0000N

000 A

24

C DSIPTK(2)=59.89
C STRTDT(1l)= 0.00
C STRTDT (2)= 0.00
C NCLTWFr=1000000.00

ARRRRRRRRRRAARRRRARRRARRRARRRNRRRARRRARNARARARRRARRRRARRARR R AR RN

OUTFILEZ2.DNX is a binary file which is also saved at
this point in the process. This file is wutilized in
conjunction with OUTPUTZ.EXE. This file passes COCOMO
estimated effort and schedule costs to the OUTPUTZ2Z.EXE program
for report processing and iterative loop control. The file
was developed as a means to easily pass variables directly
from INPUTZ.EXE to OUTPUT2.EXE while keeping them completely
separate from the dynamic simulation model process. After the
files are saved, INPUT2.EXE automatically terminates and
returns to the DOS environment to call EXECZ2.BAT. This
initiates the dynamic simulation environment for two projects.
The batch file works identical to the main batch file and
EXEC1.BAT in regard to the interfacing between programs and
processes of the dynamic simulation model. EXEC2.BAT 1is

displayed below and is modeled as an insert in Figure 2-5.
ARRRRRNRRAARRRRRRNRRAAARRENEC2 BATAN AR A RARARRRAANR AR AAAARR R AR

/* This batch file represents the batch file that calls */
/* the simulation model for the two project environment. */

DYNEX SIMTWO —d model.drs
IF¥ ERRORLEVEL 4 GOTO ERROR
SMLT SIMTWO -GO = —~DTM =
REP SIMITWO -T

GOTO EXIT

:ERROR

ECHO **% ERROR 1 ##*#x
:EXIT

ARRRAARRRAARRRARRRRNAARARRARRARANARRARRARAARARARARRAAAARRARAARNAAR

25

DYNEX.EXE, SMLT.EXE, and REP.EXE are executable
programs which are programmed in the dynamo language and must
be present in the default directory for the System Dynamics
Model to operate. The SIMTWO.DRS file, displayed below 1is
used by the dynamo report generator to write the required
output which will be displayed in SIMTWO.OUT. SIMTWO.DNX, as
discussed above, is the output file of INPUTZ2.EXE and stores
all of the input variables used by the simulation model.
Figure 2-5 also depicts the relationships of the primary
components of the dynamic simulation model and how they relate

to both the EXEC2.BAT and RUN.BAT batch files. Upon

RARRAARRARARRARKRRRAARKRASTMINO . DRSANRARRARNRRARAANARRRAARAARRK

/* This file works in conjunction with the dynex program */
/* and the dynamo report generator to produce the output */
/* file SIMONE.OUT. */

REPORT

TIME=MAXTIME,
FORMAT="1<, 15>,16<", PICTURE="22ZZZZV. 99"
"cummd (", CUMMD (1), ") . "
FORMAT="1<, 15>, 16<", PICTURE="22ZZZZV.99"
"cummd (", CUMMD (2) , ") . "
FORMAT="1<,15>,16<", PICTURE="2222Z2ZV. 99"
" time(",DURTN(1),")."
FORMAT="1<, 15>,16<", PICTURE®"ZZ2222V. 99"
" time(",DURTN(2),")."

(2222222222222 2223222222 2 22222 R 2222222222222 2222222222 22222

completion of the dynamic simulation model and EXECZ.BAT, the
system again returns to the DOS environment where OUTPUTZ2.EXE
is called. This program wutilizes information from
QOUTFILE2.DNX and SIMTWO.OUT to create an iterative 1loop

environment.

26

Figure 2-5 shows the flow of the iterative 1loop
process with dotted 1lines. The basic theory behind this
process 1is to give the user the ability to decide on the
accuracy level and the number of iterations to run in order to
continually refine cost estimates. The iterative loop runs as
many times as the user desires or until the error rates are
equal to or less then those entered by the user. The error
rates are determined by using standard algorithms for finding
percent error (i.e., difference between estimated effort from
COCOMO and actual effort determined by the simulation model
divided by the actuaal effort). In addition to 1loop
limitation and error rate entries, the user may also wish to
adjust the actual effort and schedule values determined by the
gimulation model prior to execution of the next loop. These
adjustments can be made to both schedule and effort values in
each of the two projects.

The error rates, 1loop limitations, and adjustment
factors give the user the flexibility to run the same projects
under many different conditions. This iterative loop process
provides the user with an automated tool for sensitivity
analysis to gain a better understanding of the software
development process and as a means to refine cost estimations.
As depicted in Figure 2-5, exiting this process either returns
you to the loop or to the report menu for displaying or

printing of results from the REPORT.OUT file.

27

III. SYSTEM OPERATION

A. BACKGROUND

This system is a coupling of a series of "C" programs and
a dynamic simulation model to create an interactive, user-
friendly support tool for the purpose of studying and refining
cost estimation procedures while gaining a better

understanding of software development project management.

B. SPECIAL FEATURES

The following is a list of several special features and
considerations which were incorporated into the design and
development of this system.

¢ User Friendly: This system was designed for those who
have some experience in using COCOMO and the Dynamic
Simulation Model. Although the system is designed for
ease of use, the user must have a general understanding of
the different variables and their associated acronyms in
order to achieve effective and efficient data entry.

¢ Menu Driven: This system uses a menu-driven structure
that enables the user to recognize the options available
at each level. The highest level menu is the program menu
to select a sgspecific environment (i.e., a one or two
project environment). Once an environment is selected,
the associated function menu appears. This menu enables
the user to enter new projects, read existing problems
from disk, or exit the program. Several options also have
associated sub-menus to help direct the user.

e Easy Data Entry and Modification: This system enables the
user to enter data from the keyboard or read stored data
from disk. Entry formats are designed for easy entry or
modification of input variables.

28

C. GETTING STARTED

The required and optional hardware, software and
peripherals necessary to operate this coupled modeling system
include the following:

» Required Equipment: This coupled modeling system is
designed to run on an IBM personal computer or true IBM PC
compatible computer with at least 256K bytes of memory; at
least one high density disk drive; and DOS 3.3 version or

higher.

* Optional Equipment: This model supports the IBM enhanced
graphics card, IBM color graphics card, IBM VGA card, and

Hercules monochrome graphics card. It supports the IBM
proprinter and true compatiables. A hard disk drive would
improve the overall operation of the system. A math

coprocessor is supported for the dynamic simulation model

but is not required.
D. GETTING THE SYSTEM READY FOR USE

For ease of use, this system is contained on a single high
density floppy diskette. This enables complete operation from
almost any floppy drive system. For faster processing of the
system, it is recommended to load and operate the system from
the hard disk. This system automatically uses the default
printer, unless you redirect the output, at the time of
printing, to another printer.

1. Installing the Software on Your Hard Disk

If you are familiar with a utility tool, you may wish

to create a hew directory and copy all files and programs on
the diskette to the new directory. Otherwise, continue with

the following general procedures.

29

a. When your screen displays the DOS prompt of the
drive you wish to install the program, make a sub-
directory using the DOS command 'MKDIR'. For
example the sub-directory may be called DSMI for
Dynamic Simulation Model Interface.

b. Go to the new sub-directory using the DOS command
"CD’. Then copy all files and programs from the
diskette to this new sub-directory using the
"COPY’ command.

2. Installation with Hercules Monochrome Graphics Card

a. Ensure the three files "INT10.COM",
"HARDCOPY .COM"”, and "PRINTER.DEF" are copied from
the diskette to your hard disk root directory.

b. Add the line "INT10" to your AUTOEXEC.BAT file.

c. Add the line "HARDCOPY" to your AUTOEXEC.BAT file.

E. OPERATING THE SYSTEM

Operating the system can be accomplished either by running
the system from the high density flo»ppy diskette or the hard
disk. Standard procedures for system operation a:e as
follows:

1. Operating the System from Diskette

The following is a list of steps required to operate

the model from a diskette. This system can run on a high
density floppy drive system.

a. Turn computer on if not already on.

b. Insert diskette into disk drive and change the
default drive to the disk drive which contains the
diskette (i.e., if default drive is C then change
it so DOS prompt reads, for example, 'A>').

c. At the prompt type ’'RUN’ and press the ENTER k=zy.
The system will be loaded and the initial m=nu

will be displayed. Figure 3-1 shows the
initialization menu.

30

2. Operating the System from the Hard Disk
After the computer is turned on, the interface of the
software is designed as a hierarchy of menus and a series of
data entry points. To execute the model, proceed with the
following steps. At the prompt of the sub-directory you
created on the hard drive, type the command 'RUN’ and press
enter. This will display the welcome screen shown in Figure

3-1. Press any key to continue to the environment selection

ARRKRRKRRKKRRARRRARAKRARRAAARRARAARRRAARRRARARA R kA A kAR A k%

Welcome to the coupling of
COCOMO and a SYSTEMS DYNAMICS MODEL

ARARRKRRRRKRARRRRARRAKRKRRRRRARKRARRARKRRARRRRRARAKRRRARRRAKRAKRA XX

Programmed by Richard W. Smith & Tarek K. Abdel-Hamid

Praess [ANY KEY] to continue...

Figure 3-1: Welcome Screen

window similar to the one displayed in Figure 3-2. Your
selection will determine which environment you will operate
in. Once selected you may not traverse from the single
project environment to the two project environment nor vice
versa. As mentioned above, this system provides a hierarchy
of menus. Thus, when you make a menu selection, you move to

a new menu either up or down the hierarchy of menus.

31

Therefore, whichever environment is chosen, the appropriate
initial menu will be displayed similar to the one in

Figure 3-3.

INITIALIZATION OF PROGRAMS
(Select one of the following)

1l - SINGLE Project Environme.ac
2 - TWO Project Environment

Select environment you wish to use and press enter:

Figure 3-2: INITIALIZATION OF PROGRAMS MENU

F. OPERATING IN THE SINGLE PROJECT ENVIRONMENT

The single project environment is available to observe how
a single project is affected by software development project
management over the life of the project. It can be also used
as a tool for sensitivity analysis in studies concerning the
effects certain variables have on the development cycle. The
baseline data for this model is stored in a data file called
BASE.PRF, and provides the values for the SIMONE.DNX input
file shown on page 23. Assuming that the COCOMO estimates are
accurate, the dynamic simulation model was adjusted, using
baseline data, for the purpose of achieving an error rate of
less than one percent between the initial cost estimates from

COCOMO and the actual results from the simulation model. When

32

achieved, it can be assumed that the simulation model reflects
the management policies of a particular organization (i.e.,
hiring and firing, turnover rates, training delays, etc.).
Figure 3-3 represents the initial menu in the single
project environment. As shown, there are three choices: load
a previously saved project, enter a new project, or exit the
program. These three options are discussed in detail in the

following sections.

INITIAL MENU

1 - LOAD project from disk.
2 - NEW project.
3 - EXIT Program.

Select with number or cursor and press [ENTER]...

Figure 3-3: INITIAL MENU for Single Project Environment

1. Enter New Project
If you select a new project, a basic instruction page,
shown below, is displayed. Selecting any key will allow you

to continue.

33

ARRRRAKARRRRRKARKAAXR TMPORTANT RARKAARRARRRRKRRARRA KK

In order to load a NEW project you must enter

input data for both COCOMO and the Dynamic Simulation.
There are two forms on which all data must be entered.
Please enter the data as accurately as possible.

Press [ANY KEY] to continue...

The next step is the data entry phase of the program.
A series of variables will be displayed one by one. The
program is designed to accept floating point entries for each
variable, but it will accept integers and automatically
convert them to floats. The system is designed to accept only
numbers and a single decimal point for each entry. Other
entries could cause the system to malfunction. Recovery from
a malfunction is to start over using Ctl-Alt-Del. This
shortcoming will be remedied in the next version. If you
enter a number incorrectly, continue with the entry process
until! all the entries are made. You will have the opportunity
to re—enter variables in a later step.

There are two entries that are initially made on the
COCOMO input page: the size of the project and the name of
the file you will store the data. You must enter a file name
of your choice with a maximum of eight characters, with the
first character being a letter. Do not use a period and

extension in your file name. The system automatically adds

34

the extension ".PRF" to your data file storing the proiject
profile.

The pop-up menu for selecting the basic or
intermediate COCOMO Model 1is displayed in Figure 3-4.
Selecting the Basic model initiates the mode selection menu

for display and is described below. Selecting the

COCOMO MODEL
ESC - EXIT

1l - Basic COCOMO Model
2 - Intermediate COCOMO Model

Select the model you wish to use and press enter:

Figure 3-4: Selection Menu for COCOMO Model

intermediate model initiates the screen shown below in Figure
3-5.

This screen is the COCOMO Cost Driver input screen.
There are fifteen cost drivers associated with the COCOMO
model. They are displayed as acronyms and are all initialized
to 1.00. You may leave the cost drivers as they are or change
them to the appropriate value. Figure 3-5 shows three
different cost drivers that have already been modified. To
change the value of a cost driver, you enter the number of the
cost driver you wish to change and press enter. A pop-up

menu, like the one shown below 1in Figure 3-6, will be

35

displayed with all of the levels identified with that

particular cost driver (i.e., very high, high, nominal, low
etc.) and the associated values available to choose from.
Select the value or level you desire and press enter. This

returns you to the previous screen, similar to Figure 3-5,

with the new value displayed.

2222222222223 222222222222 22222 2222 22T

INTERMEDIATE LEVEL COCOMO MODEL INPUTS

for BASE.PRF
ARRARARRRRRRRRRRRRARRAKRAKRKRAARRRRAA R AR AR RA R A KRR

1. RELY: 0.75
2. DATA: 1.00
3. CPLX: 1.00
4. TIME: 1.00
5. STOR: 1.06
6. VIRT: 1.00
7. TURN 1.00
8. ACAP: 1.00
9. AEXP: 1.00
10. PCAP: 1.00
11. VEXP: 1.00
12, LEXP: 1.00
13. MODP: 1.00
14. TOOL: 1.00
15. SCeED: 1.08

16. Press [16 or 0] when entries are complete.

Select Cost Driver and press [Enter]:

Figure 3-5: COCOMO Cost Driver Input Screen
Again you mav change as many cost drivers as you wish.
Selecting number 16 and pressing return exits you from this

screen and displays the mode selection pop-up menu.

36

The mode selection menu, shown in Figure 3-7, enables
you to select the organic mode, the semi-detached mode, or the
embedded mode. Whichever mode is selected, the appropriate
COCOMO and nominal productivity calculations are completed,
and the input display screen is displayed. This screen, shown

in Figure 3-8, enables you to display and edit the simulation

ARARRRRAANRRKARARRRRRRRRRRARRRRRAAARRARAR KA RA AR AR Ak

INTERMEDIATE LEVEL COCOMO MODEL INPUTS

for BASE.DAT
RAARRERRRRRRRRRAARRRRNARARARRRRARRRRARRRRRARRNARAAR A

RELY (Required software reliability)
ESC - EXIT

- Very Low; 0.75
- Low; 0.88
Nominal; 1.00

- High; 1.15
Very High; 1.40

MdaWwWwNh K
|

13. MODP: 1.00
14. TOOL: 1.00
1. SCED: 1.00
16. Press [16 or 0] when entries are complete.

Select Cost Driver and press [Enter]: 1

Figure 3-6: Example of Cost Driver Menu

37

COCOMO MODE SELECTION
ESC - EXIT

1 - Organic
2 - Semi-detached
3 - Embedded

Select the appropriate mode and press enter:

Figure 3-7: COCOMO MODE Selection Menu

model inputs as well as the project size inputs required by
COCOMO. By selecting the number of the variable you desire to
change and pressing enter, you may now edit any previously
entered variable. A single line display will appear on the
screen using the full name of the variable instead of the
acronym displayed on the previous screen. Enter the new float
¢r integer value and press enter. This returns you back to
the full screen shown above. There is no limit on the number
of changes or updates you wish to make. When all of the
variable values are correct, type 12 and press enter to
continue.

After exiting the display/edit screen, the program
returns to the Select New Project Menu, as shown in Figure
3-9. You may select Display/Edit to review or edit the new
project as described above, Run Dynamic Simulation, or Quit
menu and return to the Initial Menu. The Run Dynamic

Simulation selection initiates the execution of the dynamic

38

RRRARRARRARARRRRRRARRNRARRRRARARAARRARR AR N R AKX

MODEL INPUTS for BASE.PRF

Organic Mode
KRARRRARRARRRRRARKRRRRRRRKARRRRRARRRARA K

1. INUDST: 0.500 8. (1) TPFMQA[l]: 0.150
2. ADMPPS: 1.000 (2) TPFMQA[2]: 0.150
3. HIREDY: 40.000 (3) TPFMQA[3]: 0.150
4. AVEMPT: 1000000.000 (4) TPFMQA([4]: 0.150
5. TRPNHR: 0.200 (5) TPFMQA[S5]: 0.150
6. ASIMDY: 80.000 (6) TPFMQA[6]: 0.150
7. (1) TNERPK[1l]: 25.000 (7) TPFMQA[7]: 0.150
(2) TNERPK[2]: 23.860 (8) TPFMQA[8]: 0.150
(3) TNERPK[3): 21.590 (9) TPFMQA[9]: 0.150
(4) TNERPK[4]: 15.900 (10) TPFMQA[10]: 0.150
(5) TNERPK[S5]: 13.600 9. DEVPRT: 0.800
(6) TNERPK[6]: 12.500 10. DSIPTK: 59.894
11. Size of project (KDSI): 64
12. EXIT and SAVE changes.
Enter number of parameter you wish to change:
Figure 3-8: COCOMO Input Display Screen
simulation model. The type equipment you are utilizing
determines how long the simulation will take to run. The

simulation can take from approximately one minute, with a PC
equipped with a co-processor, to approximately 15 minutes,
with a PC not equipped with a co-processor. Once running, the
only way to exit from the simulation model is to press CTRL-
Break.

After the simulation model has run to completion, an

Output Selection menu is generated. You may select to display

39

NEW PROJECT MENU

1 - Display/Edit.
2 - RUN Dynamic Simulation.
3 - QUIT menu.

Select with number or cursor and press [ENTER].

Figure 3-9: NEW PROJECT MENU

the results on screen, print the results, or exit the program
as shown in Figure 3-10. The results will remain resident in

the REPORT.OUT file wuntil the program is run again.

Therefore, if you select exit you still have access to the
results. Selecting Display scrolls the results on to the
screen. Selecting Print displays a request for the printer

you wish to utilize. Either enter the printer or press return

to print the results on your default printer.

REPORT FORMAT CHOICE
1 - Display results
2 - Print results

3 - Exit

Enter one of the above:

Figure 3-10: REPORT FORMAT SCREEN

40

2. Load Project from Disk

If you select Load project from disk, the main menu
will be displayed, as shown in Figure 3-11. The Main menu
gives you four selections to choose from. These include, List
projects on disk, Select desired project, Run Dynamic
Simulation, or Quit menu. Selecting List will display all of
the project data profiles that have been previously saved in
the current directory. At the bottom of the 1list, where

requested, enter the file name of the project data profile you

MAIN MENU

-~ LIST projects on disk.
SELECT desired project.
RUN Dynamic Simulation.
~ QUIT menu.

hWwh ek
|

Select with number or cursor and press [ENTER;.

Figure 3-11: MAIN MENU for Single Project Environment

wish to utilize. An example of this screen is displayed below
in Figure 3-12.

The display edit screen will automatically be
displayed next. The screen is shown in Figure 3-8. You may
edit the data as described above or continue wusing the

resident data. If the data profile was saved in the

41

intermediate COCOMO model, the Cost Driver Input screen will
be automatically displayed. This screen, previously shown in

Figure 3-5, may also be updated as previously discussed.

Data file listing:

BASE.PRF
BALF . PRF

:> Enter project filename:

Figure 3-12: Current List of Files Screen

After either one or both of these screens have been
displayed, the Select Current data profile for COCOMO menu is
displayed. This menu, shown in Figure 3-13, allows you to
select either the Basic or Intermediate model for COCOMO
calculations. This flexibility allows the user to switch
between COCOMO models no matter what profile had been

previously saved.

Current data file is for the Basic COCOMO
(Select one of the following)

1 - CONTINUE Basic COCOMO Model
2 - Intermediate COCOMO Model

Select the model you wish to use and press enter

Figure 3-13: Select COCOMO Model Menu

42

You may also change the mode, as discussed above,
using the COCOMO Mode Selection menu, previously shown in
Figure 3-6, which is displayed next in this part of the menu
hierarchy.

The next menu, Figure 3-14, is the Saving Files menu.
You can save changes to a datafile under a new name, which
ensures the original data remains unchanged, or you may save
changes under the same name for updates to the original
datafile. After completion of this step, you return to the
main menu where you may restart the same process again or quit

the menu.

SAVING FILES
(Select one of the following)

1 - SAVE changes under Same Name
2 - SAVE changes under New Name

Select the model you wish to use and press enter:

Figure 3-14: SAVING FILES Menu

Selecting SELECT Desired Project displays a single
line request for a datafile input. This eliminates the need
to display the list described above.

The Run Dynamic Simulation selection initiates the

dynamic simulation model for the single project environment.

43

There is no user interface during the simulation, but as shown
in Figure 3-10 above, the simulation concludes with a screen
requesting the type of output you would like. Procedures for

output are also discussed above.

G. OPERATING SYSTEM IN TWO PROJECT ENVIRONMENT

The two project anvironment menu hierarchy is almost
identical to the single project environment. The basic
difference between the two environment menu structures is that
you must enter data for two projects insteaa of one. The
repetitiveness of the menu hierarchy is to provide consister.cy
and ease of use for the user. For example, the Main Menu for
the Two Project Environment, shown in Figure 3-15, gives you
four possible selections to choose from. They include, Select
Project 1 from disk, Select Project 2 from disk, Run Dynamic

Simulation Model, or Quit menu. For both project selections,

MAIN MENU

- SELECT Project 1 from disk.
SELECT Project 2 from disk.
— RUN Dynamic Simulation.

- QUIT menu.

& WN K

Soloc§ with number or cursor and press [ENTER]...

Figure 3-15: MAIN MENU for Two Project Environment
data file profiles are listed, and then followed by a request

for the file you wish to use. The program will not allow you

44

to select Run simulation Model until you have entered both
projects as shown below. This is also true if you were

You have not selected Project 1 or Project 2.

Both projects must be selected to run simulation.

Press any key to continue.........
entering new projects. However, the menu structure does allow
you to select a project from disk and then go back and enter
the other project as new.

The main difference between the two environments 1is
demonstrated when the Run Simulation is selected. In the
single project environment, the simulation model is
immediately initiated. In the two project environment, there
i3 a series of questions that must be answered prior to the
initiation of the simulation model. These questions are shown
in Figure 3-16.

This part of the model allows the user tc make adjustments
to the actual model process. In the two project environment,
an iterative loop is built into the model structure which
automatically updates the actual results of the simulation
model into new estimates. The system then reruns the
simulation process with the new estimates. Without knowing
how this automatic process will affect certain variables in
the simulation, especially regarding productivity, adjustment
factors have been included to allow the user the ability to

input increased percentages as safety factors or input reduced

45

The following entries are percentages
from building too much slack into the
In essence these factors simulate the
let the productivity lag.

Enter the Effort adjustment factor in

Enter the Effort adjustment factor in

used to prevent the model
effort variable in the project.
managers responsibility not to

project 1 as a percent: 1

project 2 as a percent: 1

Enter the Schedule adjustment factor in project 1 as a percent: 1

Enter the Schedule adjustment factor in project 2 as a percent: 1

The following entries allow you to choose the accuracy level and
limit the number of loops the model will run before completion.

Enter the accuracy level for Effort as a percent: .01

Enter the accuracy level for Schedule

Enter the limit of the maximum number

as a percent: .01

of loops the model will do: 2

Figure 3-16: Control Variable Questions

percentages to prevent the system from reducing productivity

in areas where there should be little change. If you wish to

run the simulation in a nominal mode, or without adjustment,

enter a 1.0 for each of the four adjustment factors. Entering

a 1.0 is equivalent to running the model at a 100%, entering

.95 is equivalent to running the model at 95%, and entering

1.1 is equivalent to running the model at 110%. The above

percentages refer to the percent of the effort or schedule
estimates which will be entered into the simulation during the
iterative loop process. In the nominal mode, the output or

actual results of the simulation is wused to update the

46

productivity and as new estimates to be re-entered into the
simulation model for the next iteration. The other three
entries refer to the accuracy of the results.

Two entries request the error rates of the effort and
schedule. This is a calculation of the percent difference
between the estimates and the actual resulté. For example, if
you enter a 0.05 for the effort error rate input, the
iterative loop will continue re—running the model until the
estimated effort going into the simulation model and the
actual effort result from the model has an error rate of less
than or equal to 0.05. Error rate is the difference between
the estimated cost and the actual cost divided by the actual
cost. The last entry allows the user to limit the number of
loops the model will run. This is necessary if the error
rates entered by you are not achieved by the model. The
limitation for the number of iterations will prevent an

endless loop environment.

H. RESULTS AND REPORTS

The results of this model display the estimated and actual
values of effort, schedule, and nominal productivity. The
effort and schedule relationships are represented by error
rate calcula£ions. In the single project environment there is

one line of data in the output, as shown below.

47

ARRRRRRRARRRRRARRAARRRRKXRREPORT . QOUTRARRAARRAARKRRRARRR AR A KAk

Estimated Actual Percent Estimated Actual Percent
man-days man-days Error Schedule Schedule Error

4113.13 4108.86 0.00 301.60 305.00 0.01

**** Thig data is available in REPORT.OUT #**x%*
%* Each time the model is run REPORT.OUT will change **

KRRKRRRRRRKRRRRRRRRRRRRRRRRRARRARRRARRARRRRRRRRRARRRRRRARRKAR
Single Project Environment

In the two project environment, after each iterative loop
cycle, the output consists of two lines of data, one for each
project. A single iteration output is shown below. The
results of each run are stored in to a file called REPORT.OUT.
The results in this file remain memory resident only until the
model is re-initiated using the RUN command from the DOS

prompt.

ARARRRARRRARRRRRRRKRRRRAXXKXREPORT . OUTA AR AR R ARARARRRRRRRRRARRARARX

PERCENT PERCENT PRODUCTIVITY

TOTMD1 CUMMD1 ERROR TDEV1 TIME1l ERROR OoLD NEW
3593 3591 0.00 348 348 0.00 59.89 59.92
PERCENT PERCENT PRODUCTIVITY

TOTMD2 CUMMD2 ERROR TDEVZ TI1ME2 ERROR OoLD NEW
3593 3591 0.00 348 348 0.00 59.89 59.92

**** This data is available in REPORT.OUT #***%%
%* Each time the model is run REPORT.OUT will change *%*

RARKREKRARRARRARKRRRRRRARAANRARRRNKRARAARRRARRRARRRRRAR R KRR AR KKK
Two Project Environment

48

IV. TEST AND EVALUATION OF SYSTEM

A. PROJECT DEFINITION

This chapter will provide a description of the algorithms
used in determining the COCOMO estimations and the nominal
productivity. It will also compare the results of baseline
data used by the model with the results of the COCOMO
calculations using long hand methodology. This combined model
was developed as a tool to aiu in the learning process of
software development project management. The coupling of
these different models and programs has created an environment
for an effective and efficient way to study a project over
time with the ability to adjust certain variables and conduct
sensitivity analysis in determining the wvariables which are
most sensitive to the overall project. The remainder of this
chapter will look at two test cases and an experiment to
ensure that the calculations in the front-end programs are
accurate, to illustrate an example of sensitivity analysis,
and to examine an example of the two project environment
iterative loop process. All of the following tests and
examples were based on data provided in the book by Abdel-

Hamid and Madnick (1991).

49

1. Test 1
The following test was run with baseline data to prove
the accuracy of the front-end portion of this model in the
single project environment. The data used for this test is

displayed in the input display screen, shown in Figure 4-1.

222228222222 222 e 222 2 2 22222 2 22222222

MODEL INPUTS for BASE.PRF

Organic Mode
RRRRRRARRRRRRRARARRRRANRRRRRRRRRRRARAK K

1, INUDST: 0.500 8. (1) TPFMQA[l]: 0.150
2. ADMPPS: 1.000 (2) TPFMQA[2]: 0.150
3. HIREDY: 40.000 (3) TPFMQA[3]: 0.150
4. AVEMPT: 1000000.000 (4) TPFMQA[4]: 0.150
5. TRPNHR: 0.200 (5) TPFMQA([5]: 0.150
6. ASIMDY: 80.000 (6) TPFMQA([6]: 0.150
7. (1) TNERPK([1]: 25.000 (7) TPFMQA([7]: 0.150
(2) TNERPK([2]: 23.860 (8) TPFMQA[8]: 0.150
(3) TNERPK([3]: 21.590 (9) TPFMQA[9]: 0.150
(4) TNERPK[4]: 15.900 (10) TPFMQA[10]: 0.150
(5) TNERPK[5]: 13.600 9. DEVPRT: 0.800

(6) TNERPK[6]: 12.500 10. DSIPTK: 59.894
11. Size of project (KDSI): 64
12. EXIT and SAVE changes.

Enter number of parametaer you wish to change:

Figure 4-1: Input Display Screen

Most of the variables are direct inputs to the simulation and
calculations are not required. The COCOMO calculations vary
in nature between the basic and intermediate models. There

will be one example of each in test one.

50

a. Basic COCOMO

Basic COCOMO uses a simple algorithmic methodology
to determine the effort and schedule estimations for project
development. There are several inputs necessary to accomplish
this. The first is the size entry, which is inputted as
thousand decision source instruction, KDSI. The other
necessary input is a choice between the different modes of
COCOMO: organic, semi-detached, and embedded. Each mode has
its own series of equations for estimation calculations.
Although the organic mode was used in this test, all of the
equations for the different modes are displayed in Table 4-1
below.

The first equation uses KDSI to calculate the

estimated effort variable. The second equation then uses

TABLE 4-1: BASIC COCOMO EQUATIONS
]

Basic COCOMO Equations
Mode Effort Schedule
Organic MM =24(KDS)'™ TDEV = 25(MM)*®
Semidetached MM = 3.0(KDS!)' ? TDEV = 2.5(MM)*™
Embedded MM = 3 8(KDSI) ® TDEV = 2.5(MM)°®

51

the effort variable to determine estimated schedule. The
equations from Table 4-1 above represent results calculated in
man-months for effort and months for schedule. In the
simulation model, the results are calculated in man-days for
effort and days for schedule. The conversion to man-days is
completed by multiplying man-months by 19, the standard number
of actual workdays in a month (Boehm, 1981). The schedule
estimation must be calculated using man-months for effort to
determine the number of months and then multiply the months by
19. The equations below depict an example of the COCOMO long
hand calculation results utilizing the baseline data.

The printout below, REPORT.OUT, shows a typical

output from the single project environment. Estimated man-

Example 1. Basic COCCMO

MD = 2.4(64)'* X 19
= 189.1 X 19
= 3593

TDEV = 2.5(189.1/% X 19

= 183 X 19
= 348

days is the value calculated using the COCOMO algorithms for
effort necessary to complete the project. The actual man-dzays
is the value calculated by the dynamic simulation model. This

value represents what the actual effort would be to complete

52

the project after all of the project management policies were
incorporated into the COCOMO estimate. Estimated Schedule is
the value calculated using the COCOMO algorithms for the time
in days it takes to complete the project. The actual schedule
is the value calculated by the dynamic simulation model. This

value represents the actual time it would take to complete the

ARRRRKRRRARRARRARRA AR XA XREPORT . OUTAA KRR AR AR AR RARARRARRARRRAR AR

Estimated Actual Percent Estimated Actual Percent
man-days man-days Error Schedule Schedule Error

3592.97 3590.89 0.00 348.21 349.00 0.00

% Thig data is available in REPORT.QUT ***%
**** Each time the model is run REPORT.OUT will change ****

RERRRRARRRRRRRARRARARRRRRARRRRRARRARARRARARRARRARRRRARRRARANARR R A ALK

project after all of the project management policies were
incorporated into the COCOMO estimate.

Comparing the long hand calculations above with the
results generated by the combined model in REPORT.OUT proves
that the algorithms within the model provide the simulation

with the correct estimates.

b. ;ntotmodiato COCOMO
The intermediate model works on the same general
principles as the basic model. The equations for the schedule
calculations are identical. The differences in the two models

are reflected in the differences between the equations for

53

effort estimation. First, the coefficients are different.
The coefficients in the intermediate model must account for
the aggregate effect of the effort multipliers (Boehm, 1981,
p- 117). There are 15 effort multipliers or cost drivers
which are multiplied by one another to determine the effort
adjustment factor (EAF). The Intermediate COCOMO equations
are displayed in Table 4-2.

Chapter III described how the values for each cost
driver is reached. The EAF is incorporated into the effort
equation through direct multiplication. The equations below
show an example of how EAF is calculated and applied to the

effort equation in the intermediate COCOMO model.

TABLE 4-2: INTERMEDIATE COCOMO EQUATIONS
|

Intermediate COCOMO Equations
Mode Effort Schedule
Organic MM = 3.2(KDSI)'®x EAF TDEV = 2.5(MM)>®

Semidetached MM = 3 0(KDSI)' *x EAF TOEV = 2.5(MM)**

Embedded MM = 28(KDSI) ®x EAF TDEV =25MM)°*

EAF - Effort Adjustment Factor (CD « CD’ *CD, . -CD‘,)
where CD is one of 15 Cost Drivers

54

The cost drivers tend to effect the overall effort
cost the same (i.e., the cost either increases or decrease as
a cost driver rating goes from very low to very high). For

example, if you rate the software reliability of a project

Example 2: Intermediate COCOMO
EAF = 0.75x 1.08 x 1.08 x 1.00...... x 1.00 = 0.8588
MD = 3.2(64)'* X 19 X 0.8586

= 252.1 X 19 X 0.8586
= 4113

MM = 252.1 X -“-1&%9 = 200.4

TDEV = 2.5(200.4)** X 19 X 0.85
= 18.7 X 19X 0.85
= 302

very low it will cut the effort cost by 25%, but if you rate
the programmers capability very low it will increase the cost
of the project by 42%. This is true for all the cost drivers
except for the required development schedule cost driver. As
the rating goes from low to high, the effort multiplier
decreases until the rating becomes nominal (1.00), and it
increases as the ratings become higher. Intuitively, this is
true because it will take more effort to either compress or
expand the work schedule. The schedule cost driver does not
affect the algorithm for determining the effort but does
affect the algorithm to determine schedule. If you increase

the effort by compressing or expanding the schedule and use

55

that calculated value of effort in the schedule equation, the
schedule will always increase in time. This is not true if
you have increased effort to compress the schedule.
Therefore, to calculate the schedule you must divide the
effort by the schedule cost driver (also divide by 19 if
working in man-days), and insert the adjusted effort in the
schedule equation. Then multiply that number by the
associated percentage for each rating level. For example, the
effort multiplier for 1low 1is 1.08 and its associated
percentage 85%. Multiplying by .85 would then account for a
15% compression in schedule. You must also multiply by 19 to
determine schedule in days. The equations in the above
example represent long hand calculation results using
intermediate COCOMO. Comparing these results to those shown
from the computer results in REPORT.OUT below, proves that the
intermediate COCOMO algorithms within the model provide the

simulation with correct and accurate estimates.

AARRRRRRARARARARRAXRARKRAKRAREPORT . OUTAXR R AR A AR AR ARARRRRARRRARRARK

Estimated Actual Percent Estimated Actual Percent
man-days man-days Error Schedule Schedule Exrror

4113.13 4108.86 0.00 301.60 305.00 0.01

#x*%* This data is available in REPORT.OUT #**#x
%*%* RBach time the model is run REPORT.OUT will change **

ARARRAARARARARARRANRARARRRRAARRARARRAARRARRRARARARARARARRARRRRAA R AARA R AR A AN

56

2. Test 2

The following test was run with baseline data to prove
the accuracy of the front-end portion of this model in the two
project environment. The data used for this test is displayed
in Figure 4-1 and is the same data used in the previous test.
As in the first test, most of the variables are direct inputs
to the simulation and calculations are not required. This
test for the two project environment was conducted using the
same input data for both projects. The projects were also
treated as independent projects using Basic COCOMO. With no
interaction between the projects, the results of each project
in this test should have been identical with the test results
from the project run in the single project environment.
Comparing the results from the equations in Example 1 above to
those shown from the computer results in REPORT.OUT below,
proves that the COCOMO algorithms within the model provide the

simulation with correct and accurate estimates.

RRANRARRRRRARRRRRARRAARRAREDORT . OUTARARARARRARRARRRARARRRRAAKK

PERCENT PERCENT PRODUCTIVITY

TOTMD1 CUMMD1 ERROR TDEV1 TIMEl1l ERROR OLD NEW
3593 3591 0.00 348 348 0.00 59.89 59.92
PERCENT PERCENT FRODUCTIVITY

TOTMD2 CUMMD2 ERROR TDEVZ2 T1ME2 ERROR OoLD NEW
3593 3591 0.00 348 348 0.00 59.89 59.92

*x%** Thigs data is available in REPORT.OQOUT *x*xx%
**%*%* Each time the model is run REPORT.OUT will change **#*x*

AARNRARRARRRRARRRRARRRRRRRARRRARARRARARAAARRRRRAARRRRANARRARRAARR A kN

57

3. Test 3

The following test was run with baseline data to prove
the accuracy of the nominal productivity algorithms for input
to the simulatiova model within the front-end portion of this
model. This test was run in conjunction with Test 2. The
results for nominal productivity are displayed as part of the
output data in the REPORT.OUT file shown above.

There were two sets of algorithmic calculations that
required testing. The first part of the test was to prove
that the initial algorithms were correct, and the second part
of the test was to prove that the nominal productivity
dynamically updates as the variables associated with it are
updated. The following set of equations are required to

determine nominal productivity:

Nominal Productivity Equations

DP = (1-(%MDT + %MDQA + %MDR)) x MD

ADP - Actual Development Productivity ADp = SZe(LOC)

DP - Development Productivity D- MD

NP - Nominal Productivity

MD - Man-days

D-MD - Development Man-days Staff Size = MD/19
%MDT - % MD for Tests TDEV/19

%MDQA - % MD for QA

%MDR - % MD for Rework Staff Size Is entered Into Table 4-2 to get

Communication Overhead

ADP
0.6 x (1 - Comm overhesd)

NP =

58

Table 4-3, displayed below, is necessary to retrieve
the value for communication overhead from the average staff
size input. In many cases, you must interpolate for proper
communication overhead values.

TABLE 4-3: STAFF SIZE VS.

COMMUNICATION OVERHEAD
L

Communication

0 0

5 0.015
10 0.06
15 0.135
20 0.24
25 0.375
30 0.54

NOTE: 30 appler 10 greater than
30 a» welt.

Nominal productivity is affected by many variables.
The first variables that you need are inputs for percent of
man-days for tests, percent of man-days for quality assurance
(QA) and percent of man—days for rework. All three of these
variables are critical to the success of the project, but are
not considered an input to the process.

The development of software systems involves a series of
production activities where opportunities for injection of
human falliabilities are enormous. Errors may begin to
occur at the very inception of the process where the
objectives...may be erroneously or imperfectly specified,
as well as [errors that occur in] later design and
development stages....Because of human inability to
perform and communicate with perfection, software
development is accompanied by a quality assurance activity
(Pressman, 1987, p. 467).

59

Software testing is a critical element of software
quality assurance and represents the ultimate review of
specifications, design, and coding. Testing in some instances
is equivalent to 40 percent of the total project effort.
Rework is the third critical element utilizing a percentage of
project effort to correct errors located by quality assurance
and testing (Pressman, 1987). These three variables are
entered directly into the model. They are used for
determining Development Productivity in man-days as shown.

DP = (1 - (0.22 + 0.11 + 0.14) x 3593
DP = 1904 man-days

Development Productivity is divided into the size of the
project for the determination of the Actual Development
Productivity. This productivity is defined as the outputs
produced by the process divided by the inputs consumed by the
process (Boehm, 1981, pp. 44). Since a certain percentage of
effort must be expended on testing, quality assurance, and
rework, it makes sense that Actual Development Productivity
only account for the effort expended on the actual
development.

ADP = 64000/1904 33.61 DSI/man-day

The next step is to divide the effort in man-months by
the schedule in months, which provides the average staff size
for the project. Entering this value intc Table 4-2 you wiil

Staff Size = 189.1/18.3 = 10.3

60

be able to extract the Communication Overhead. The larger the
staff size the more communication problems and breakdowns a
project will incur. Therefore, a percentage of the
ccmmunication overhead also affects productivity. Nominal
productivity is determined through the division of the Actual
Development Productivity by the multiplying the communication
overhead percent by 0.6. It ' 3 been determined that
approximately 60 percent of a single work day is utilized for
technical development, which accounts for the 0.6 factor
applied in the equation (Ghezzi, 1991, pp. 420).
NP = 33.61/[0.6 x (1 - 0.0645)]
NP = 59.88

Nominal productivity consists of many variables which
continually change values throughout the process of this
model. As the effort changes, the schedule changes, and as
the schedule or the effort change, the staff size changes,
which causes the communication overhead to change. The
equations 1listed below shows, step by step, how nominel
productivity changes dynamically with changes in the effort
and schedule variables. Comparing the new and old
productivity values from the computer results in REPORT.OUT
from Test 3 to the results from the above equations proves the
algorithms in the model provide the simulation with the
correct nominal productivity, and that Nominal Productivity is
a dynamically changing variable throughout the simulation

process.

61

Dynamic change in NP

DP = (1-(0.22 + 0.11 + 0.14) x 3501
DP = 1903

ADP = 3363

Staff Size = = 10.3

189
18.3

3383
NP = 58+ (09ass) ~ 09

4. Experiment

This experiment was conducted to test the sensitivity
of Jjust one of the many applications and advantages of
utilizing a coupled modeling system. The same data was used
for both projects as in Test 3 above.

Assuming the original COCOMO inputs for cost and
schedule were accurate, the simulation model ran in the two
project environment with a work force ceiling of 15 people.
To run this experiment, there were several adjustments that
were made to both models. The simulation model was adjusted
to allow for interaction between the two projects, as not to
run independently of each other as in Test 3. The other model
was adjusted to include the ability to enter the work force

ceiling variable and the start dates for both projects.

62

The work force ceiling is an attribute of the average
staff size. For both of these projects in this experiment, the
average staff size was approximately 10. Therefore, on the
average there would be only 20 people working on both projects
at any single point in time. The work force ceiling of a
project is the total number of people that management will
allow to work on a project at any particular time.

In many software companies resources are shared
between projects. This was one of the themes in the
experiment. By reducing the work force ceiling to 25 percent
of the combined total average staff size, or 15, the
simulation is forced to create an environment of priorities
which would ideally return the minimum effort required to
complete both projects in the shortest and most effective time
frame.

The iterative loop process in this model compares
effort estimated to effort actual and schedule estimated to
schedule actual. Prior to beginning the initial simulation
run, the user must provide inputs for the desired accuracy
levels between the estimates and the actual results for effort
and schedule. For example, inputting 0.05 would set the
effort error level of the estimate to 5% of the actual, where

the error rate! is as follows:

! For this study the standard format for Error Rate is

the absgolute value [ABS(x)] of the Estimate minus the Actual
divided by the Actual.

63

Error Rate = ABS (Estimate -~ Actual) / Actual
It also requires an input to restrict the number of
iterations. This would prevent the possibility of an endless
loop if the model could not reach the accuracy level
requested. After the conclusion of each simulation run, the
iterative loop process evaluates the results to determine if
they meet user requirements for accuracy. If not, then the
effort, schedule and productivity variables are adjusted and
re—-entered into the simulation as new estimates. If they are,
then the program is terminated and the results are saved in
REPORT .OUT.

The start date variable for each project was included
to allow for different start dates of projects. This can
determine how one project in a later phase of project
development is affected by another project, just beginning,
and are required to share resources.

For this experiment, the work force ceiling used was
15. This experiment was run four times changing the start
dates each time. Project 1 always started at time zero, while
project 2 was zero for the first run, 100 for the second, 200
for the third and 300 for the last run. There are several
ways the results are displayed. The desired accuracy level

used was 1 percent for effort and 1 percent for schedule. For

o

the experiment run with the same start dates, Figures 4-2 and
4-3 show the Effort vs. number of Iterations of actual and

estimated effort from both projects and the Schedule vs.

64

number of Iterations of actual and estimated schedules from

both projects, respectfully.

EXP 1—-1, TOTMD RELATIONSHIPS
. Project 1 & 2 use BASE DAT
° A ,__,i’
o e
O o b e e
— o ! a“‘
yoma | R -
I - L |
0 __ ;«——' e SR
i ’ NO. of ITERATIONS
e Proj 1 ESTTOTMD _, Proj 1 ACT TOTMD
7 - Proj 2 ESTTOTMD _5 Proj 2 ACT TOTMD
Figure 4-2: Trend in Effort over a Series of
Iterations

EXP 1—1, SCHEDULE RELATIONSHIPS
Project 1 & 2 use BASE PRF
] s _d_f::"_::_ﬁg_——’;:ﬂ
> a7 ’:"’M_:::_;—:t:————*—ﬂ.
g o0 b p— — _,_—_~‘;'i5_——__'2_':— —":-__-/ —
5 nl > -
T e— — B —®
NO of ITERATIONS
o Proj } ESTSKED , Proj ! ACT SKED
) » . Proj 2 EST SKED _o_Proj 2 ACT SKED
Figure 4-3: Schedule Trends over a Series of
Iterations

65

Figures 4—-4 and 4-5 represent the same comparisons as

above; however, the start dates are no longer the same in this

test.

later than the first.

The start date in the second project is now 100 days

1IN
400 s e
,/- //
= & -
auen e
o N s B . _::_—E
E 1900 e e __ o
. - _ -
— i - e [oo
QO e . -
- - a
oo b - .
4 . S A
- e -
200 j— e s e
| o —a
390 —

00 A i I I 1 i .
B

EXP 1 =2, TOTMD RELATIONSHIPS

Project 1 & 2 use BASE.PRF

i
s k4 L)

NO. of ITERATIONS
o Proj 1 ESTTOTMD _,_Proj 1 ACT TOTMD
—+Proj 2 EST TOTMD _o_Proj 2 ACT TOTMD

WML Q10 MRS

Figure 4-4: Effort Trends over a Series of
Iterations with Different Start Dates
EXP 1 -2, SCHEDULE RELATIONSHIPS
. Project 1 & 2 use BASE.PRF
e —— =
e -
830 P w—”‘:,_,__ﬁ "
.7 A — __a————'—‘____i""—-‘——:‘:i:_"—__:ﬂ
2 so0 Lo e - B__v_‘_i__ -
Q as0 |- e -
awmy ;_B,// ’ a)
LL LRSS
) i ; 1 -~ L L A.J
NO. of ITERATIONS
* _a Proj V ESTSKED _,_ Proj 1 ACT SKED
) w Proj 2 EST SKED 4. Proj 2 ACT SKED
Figure 4-5: Schedule Trends over a Series of

Iterations with Different Start Dates

66

Figure 4-6 and 4-7 show how the percent error changes
over the number of iterations for the effort and schedule of
both projects. Both projects of Figure 4-6 had the same start

dates. Figure 4-7 had the second project start 100 days after

the first.
EXP1—1

a3 Project } & 2 use BASE.PRF
— Ias
=z
[2 =
9 N
&) [.
B . i

i *-_1,(« f“b-%::_

e : et |

NO. of ITERATIONS
o Pro) 1 TOTMD Ervor Rate _, Proj 1 SKED Error Rate
—o Proj 2 TOTMD Error Rate _g_ Proj 2 SKED Error Rate

»

Figure 4-6: Error Rate Trends

EXP1 -2

Project 1 & 2 use BASE.PRF

% PERCENT
%)

T =S -
L , : . e

NQ. of ITERATIONS
_e-Proj 1 TOTMD Error Rate _, Proj 1 SKED Error Rate
—a- Proj 2 TOTMD Error Rate _o Proj 2 SKED Error Rate

Figure 4-7: Error Rate Trends with Different Start
Dates

67

The third and fourth run of this test incremented
project 2 start dates by 100 days per run. In both cases, for
this size project, sharing of resources with the second
project start date 200 days or later had no significant effect
on either project. There are many distinguishable trends that
can be identified from the above graphs. Error Rate analysis
shows that as the number of iterations are increased, the
better the percent error rate. The error rate stabilized
after four iterations and continued to approach zero. The
effort and schedule related graphs show an expected increase
in costs due to the sharing of resources. However, in all
cases, even with the variable start dates, the estimated and
actual costs tended to approach one another over the number of
iterations. In addition, there was also a tendency for the
costs to plateau or level off. This could lead to providing
an upper cost limit on software development costs. Chapter

V will discuss these issues in greater detail.

68

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The primary objective of this thesis was to investigate
the utility of coupling the COCOMO model with a Systems
Dynamics Model of Software Project Management. It was
expected that a combined model would allow for a richer and
more complete set of cost drivers, thus increasing software
cost estimation accuracy. The premise was coupling a model
that quantified estimation based solely on objective
variables, with a dynamic simulation model, which incorporates
subjectivity into project management issues. This coupling
would create an environment which not only addresses the
necessary objective variables but also addresses many
subjective variables of project management that tend to have
an enormous impact on the cost and schedule estimates of a
project. It was also expected that a coupled model would
provide a means for more extensive sensitivity analysis.
Another main objective of this thesis was to investigate the
opportunity to optimize cost estimation procedures in a two
project environment.

As a first step a simple "C" program was designed for
basic COCOMO to ensure that an interface <could be

accomplished, i.e., an algorithmic model could be coupled with

69

a dynamic simulation model. After a successful initial test,
four additional "C” programs were designed as well as
expanding the first to include the ability to choose between
the basic or intermediate COCOMO models. The programs are
explained in detail in Chapter II. There were two separate
environments incorporated into the design.

The single project environment was developed to study
independent projects. The results of the tests in Chapter IV
proved that the COCOMO algorithms are correct in both the
basic and intermediate COCOMO models. The development of this
type of system lends itself to the ease of variable entry.
Whether the variable is from COCOMO or the simulation model,
it is an ideal environment for studying the sensitivity of
results to changes of a single variable on the entire project.

The two project environment was developed to incorporate
the use of sensitivity analysis to investigate the opportunity
to optimize cost estimation in an environment of shared
resources. The experiment conducted in Chapter IV established
the w~ork force as the shared resource and limiting factor.
The experiment was run four times with the start date of the
second project being adjusted by 100 days each run. For this
experiment, the results were quite conclusive that over a
series of iterations the adjustments in a shared resource
environment cost estimation and schedule estimates could be
refined. This 1is apparent from the graphs of Chapter 1IV.

Comparison of error rates clearly shows that after four

70

iterations the error rate not only remained below five
percent, but continued to decrease after each additional
iteration toward an optimal zero percent error. In the other
two series of graphs, the displays depict the estimates vs.
actual results. In all cases, after several iterations, there
is a trend of convergence between estimate'and actual costs.
This trend, however, does not occur without additional cost in
effort and schedule. Initially, the additional costs were
fairly significant, but as the number of iterations increased,
the results not only converged but they also tended to level
off. This could give a project manager a much more realistic
estimate of project cost and also provide top management with
fairly realistic high-low estimate of total project cost.
The experiment also examined the sensitivity of start
dates in the two project environment. With the remaining
variables constant, the start date of project 2 was adjusted
to 100 days after the start date of project 1. Two additional
runs under the same conditions were also conducted. Each
additional run increased the sgtart date of project 2 by 100.
Therefore, the fourth run was to demonstrate the effects of
sharing resources with a project starting 300 days after the
start of another project. The results indicate that the cost
of sharing resources is less for two projects starting the
same date than for two projects starting 100 days apart. The
impact seemed to be greater on the first project because of

the need to reallocate less resources over the same work

71

requirements. Another interesting resvlt was that after
approximately two thirds of project 1 was completed, sharing
resources no longer had a significant impact on either
project. These results conclude that it is easier to manage
a project with a known set of resources from the oneginning
rather than having to shift personnel and priorities one third
of the way through a project. This is just one example cf how
a coupled model can utilize sensitivity analysis to study and
understand the many aspects and variables associated with
Software Project Management.

Using COCOMO and defining its objective variables provide
cost estimations which tend to fall short by itself. By
studying and learning how the subjective variables affect the
system can lead to not just an improved understanding of
project management, but to the ability of narrowing the

percent error in cost estimation currently plaguing the

software industry. For example, COCOMO is used to provide
initial estimates to the simulation model. COCOMO has only
been accurate to a point. With respect to historical model

accuracy, the Basic COCCMO estimates were within a factor of
1.3 of the actual cost only 29% of the time, and within a
factor of 2.of the actual cost only 60% of the time (Boehm,
1981, p. 114). Applied to this experiment, that would infer
that the actual project results would have been between 4670
and 7186 man-days for effort only 29% and 60% of the time.

respectively. From the results in chapter four, this coupled

72

model, wutilizing an iterative loop process, continually
addressed subjective variables not incorporated into COCOMO to
establish what appears to be very accurate results. In
essence the coupled model accepts COCOMO estimates and then
incorporates the subjective influences of project management
tc eliminate the need for a "safety factor" to account for the
factors 1.3 to 2 of the actual produced by COCOMO. This
experiment produced effort estimates within 13% of COCOMOs
original estimates and schedule estimates within 41% of COCOMO
estimates. The significant difference in schedule is due the

sharing of resources.

B. RECOMMENDATIONS FOR FUTURE PRESEARCH
Several areas are available for conducting follow-on and
future research. Several prominent topics are: (1) refining
the current system, (2) conducting experiments using the
current system to evaluate the variables most sensitive to
proiect development to define a more complete set of cost
drivers, and (3) utilizing the model in an actual project
environment to study whether the system will optimize cost
estimation in a two project environment.
1. Refining the Current System
Sincé one of the purposes of this thesis was to
optimize cost estimation in a two project environment, the
programs developed were focused on the ability to accomplish

this. A possible follow-orn research would be to enhance the

73

current system with the ability to change variables between
iterations, thus giving the user greater flexibility and
control in conducting experiments.
2. Use of Current System for Sensitivity Analysis
Experiments
This thesis was developed to create an avenue to study
and establish a richer set of cost drivers. The tool now
exists to use sensitivity analysis to determine the variables
that are most sensitive to project development. This would be
an obvious next step for a follow-on thesis topic.
3. Determine Real World Advantages
Laboratory experiments and use of historical data can
lead to very conclusive results. However, since this model
contains many subjective variables, among the countless number
of actual variables which effect Software Project Development,
the proof of the usefulness and effectiveness of this system
cannot be determined until it is used by industry. This is

the ideal experiment and test for follow-on studies.

74

APPENDIX A

/* AAAAAIAAAAKRKEA AT AR AAAAAKRAKRAAKRA KRR A A AR AARARKRARA R A A AR AR AR ARk kk ik */

/* * Author: Richard W. Smith Advisor: Prof. Abdel-Hamid * */
/* * Program: Main Lang: C * x/
/* * Used Shareware <windows.h> in project =nvironment * x/

/* KAKAAKKK KA AA A A AR A A AR AAARA KR A AR b AR A Ak kA ARk hkhhkhkkhhkihkh */

/* This is one of 5 programs written and interfaced with the */

/* Dynamic Simulation Model. This particular program is a simple */
/* program that allows the user the ability to select the single */
/* project environment or the two project environment from a menu. */
/* Once the user selects this program is terminated. */

/* The following headers were used and needed to utilize the */
/* library functions used throughout this program. */

#include <windows.h>
#include <stdio.h>

/* Declarations for the menu windows boarder and background */

int bat; /* border atrib */
int wat; /* window atrib */

/* The following are static structures developed to be */

/* used throughout the program in pop-up menus for various */
/* user selection requirements. The learning curve for */

/* the use of windows.h was considerable, however, once */

/* learned it is fairly simple to create menus. */

static struct pmenu intelc50 =
{0, FALSE, O,

2, 3,

1, 8, " INITIALIZATION OF PROGRAMS", O,

2, 8, " (Select one of the following)", 0,

4, 12, "1 - SINGLE Project Environment®, 1,

5, 12, "2 - TWO Project Environment", 2,

7, 3, "Select environment you wish to use and press enter:",0,
93, 99, "",99

}e
WINDOWPTR w3; /* window to use */

void main ()
{

int sel;

/* bat is the boarder attribute for the pop-up window */
/* sets background to blue and boarder to white */

bat = v setatr (BLUE,WHITE,O0,Q0);
/* wat is the window attribute for the pop-up window */
/* sets background to blue and text to white */

75

}

wat = v_setatr (BLUE,WHITE,O,0);

/* Introduction window is declared as w3 above and */
/* is opened and closed as if it were a file */

clrscr();

wn_init ();

w3 = wn_open(0,5,10,60,12,wat,bat};
i£('w3) exit (1)

wn prlntf (W3, " Kododok e Aok deok e vk ok Rk ok R K kA Ak Ak sk e vk bk ok e kR kA Rk kb e gk ok A ke ok ok ke ke K

_ \n\n") ; .]
wn_printf (w3," Welcome to the coupling of \n");
wn printf (w3," COCOMO and a SYSTEMS DYNAMICS MODEL\n\n");
wn—printf(w3, " hkdkhkhkhkhkhkAhkhkhkhkhkhkhkhhkdhhkhkhhkhhhkhhbhkhkhkhkkhkkhkhkhhdhhhhhkkrk

- \n\n") ; -
wn_printf (w3, " Programmed by Richard W. Smith & Tarek

Abdel-Hamid\n\n\n");

wn_printf (w3, " Press [ANY KEY] to continue...");

v_getch(); /* Stops the program and awaits any keyboard entry */
wn_close (w3);

clrscr();

/* Sets the pop-up window size and assigns a ststic structure */

/* for menu operation */

/* sel awaits an appropriate keyboard entry from the menu choices */

sel = wn_popup(0, 5, 10, 55, 10, wat, bat, &intelc50, TRUE);

switch (sel) /* case statement to direct remainder of coupled */
/* system */
{
case 1:
exit (0); /* if selected, program exits to DOS for */
/* system call to INPUT1.EXE */
case 2:
exit (l1); /* if selected, program exits to DOS for */
/* system call to INPUT2.EXE */

}

/* end program */

76

APPENDIX B

/* A AARAAAAKAAKRAAAAKRAAKAAKAKRAAAKRAAAAA AR AR A AR AAANA A Aok hkkhhkdhhkhhk */

/* * Author: Richard W. Smith Advisor: Prof. Abdel-Hamid * */
/* * Program: Main Lang: C k *x/
/* * Used Shareware <windows.h> in project environment * *x/

ZEEESESEESIEESEEESEESEEEESSS S S SRS RS R EEREEEEEEREEREEEEEESESERS] */

/* This is one of 5 programs written and interfaced with the */

/* Dynamic Simulation Model. This particular program completes */
/* two tasks. First it accepts input variables for the dynamic */
/* simulation model and COCOMO acting as a front end for the */
/* model in the single project environment. Then it makes all */
/* the necessary COCOMO calcuations for either the Basic or */

/* the intermediate versions of COCOMO. */

/* The following headers were used and needed to utilize the */
/* library functions used throughout this program. */

#include <windows.h>
#include <stdio.h>
#include <math.h>
#include <conio.h>
#include <dir.h>
#include <string.h>

/* Prototypes for the functions which will be */
/* described below. */

int filelist (void);

void model in(float *,float *,int *,float *,int,char al],float
*, int, float) ;

void icocomo_in(float *, float *,int,char *);

void file save (float *,float *,float *,char *,float,int *,int, float);
void file prnt (float,float,int *,float *);

float interp(float):

float prod(float *,float,float,int *);

void calc (float *,int *,float *,float *,float,float,float);

void initial (float *);

/* Declarations for the menu windows boarder and background */

int bat; /* border atribute */
int wat; /* window atribute */

/*Pointer to file being used*/

FILE
FILE
FILE
FILE

textfile;
fin;
fout;
fnew;

* % % %

WINDOWPTR w3; /* window declaration */
WINDOWPTR w4 /* window declaration */

77

*, float

/* The following are static structures developed to be */
/* used throughout the program in pop-up menus for various */
/* user selection requirements. The learning curve for */
/* the use of windows.h was considerable, however, once */
/* learned it is fairly simple to create menus. */

static struct pmenu intelc =
{0, FALSE, O, /* Must be FALSE */

1, 3, /* The 1 initiates which row */
/* The 3 determines number of lines */
/* which can be highlighted after row */
/* row,col */

20, "INITIAL MENU", O,
12, "1 - LOAD project from disk.", 1,

12, "3 - EXIT Program.", 3,

3, "Select with number or cursor and press [ENTER]...",0,

*
1,
4,
5, 12, "2 - NEW project.", 2,
6,
9,
9

99, 99, "",99

}s

static struct pmenu intelc23 =
{0, FALSE, O,
1, 3,
1, 20, "NEW PROJECT MENU", O,
4, 12, "1 - Display/Edit.", 1,
5, 12, "2 - RUN Dynamic Simulation.", 2,
6, 12, "3 - QUIT menu.", 3,
9, 3,
9, 99, "",99
}

static struct pmenu intelcO =
{0, FALSE, O,

1, 4,
1, 21, ™ MAIN MENU", O,

3, 15, "1 - LIST projects on disk.", 1,

4, 15, "2 - SELECT desired project.", 2,

5, 15, "3 - RUN Dynamic Simulation.", 3,

6, 15, "4 - QUIT menu.", 4,

9, 3, "Select with number or cursor and press [ENTER]...",0,
99, 99, "v,99

static struct pmenu intelcl9 =

{0, FALSE, O,

2, 3,

1, 15, " COCOMO MODEL"™, O,

2, 15, " ESC - EXIT ", O,

4, 15, "1 - Basic COCOMO Model", 1,

5, 15, "2 - Intermediate COCOMO Model", 2,

"Select with number or cursor and press [ENTER]...",O0,

7, 3, "Select the model you wish to use and press enter:",0,

99, 99, v, 99
b

static struct pmenu intelc2l =
{0, FALSE, O,

2’ 3’

1, 6, "Current data file is for the Basic COCOMO", O,
2, 6, " (Select one of the following)", O,

4, 10, "1 - CONTINUE Basic COCOMO Model"™, 1,

78

5, 10, "2 - Intermediate COCOMO Model", 2,

7, 3, "Select the model you wish to use and press enter:",0,
99, 99, "",99

}i

static struct pmenu intelc22 =
{0, FALSE, O,

2, 3,
1, 16, "SAVING FILES", O,
2, 6, " (Select one of the following)", 0,
4, 10, "1 - SAVE changes under Same Name ", 1,
5, 10, "2 - SAVE changes under New Name", 2,
7, 3, "Select the model you wish to use and press enter:",0,
39, 99, "n,99
b

static struct pmenu intelc20 =
{0, FALSE, O,

2' 4!

1, 10, " COCOMO MODE SELECTION", O,
2, 10, n ESC - EXIT ", O,
4, 18, "1 - Organic", 1,
5, 18, "2 - Semi-detached", 2,
6, 18, "3 - Embedded", 3,
8, 3, "Select the appropriate mode and press enter: ",0,
99, 99, "",99

static struct pmenu intelcl =
{0, FALSE, O,

6,

2, " RELY (Required software reliability)", O,

2, " ESC - EXIT ", O,

15, "1 - Very Low; 0.75", 1,

15, "2 - Low; 0.88", 2,

15, "3 - Nominal; 1.00", 3,

15, "4 - High; 1.15",4,

15, "5 - Very High; 1.40", 5,

3, "Select the appropriate Software Cost Driver Rating: ",0,

99, "",99

L N T

-

O
O ®-Jd W abhor-

o~

—

static struct pmenu intelc2 =
{0, FALSE, O,

2, 5,

1, 2, " " DATA(Database size):", 0,

2, 2, " ESC - EXIT ", O,

4, 15, "1 - Low; 0.94", 1,

5, 15, "2 - Nominal; 1.00", 2,

6, 15, "3 - High; 1.08", 3,

7, 15, "4 - Very High; 1.16",4,
10, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99

}:

79

static struct pmenu intelc3 =
{0, FALSE, O,

2, 1,

1, 2, " CPLX (Product complexity)", G,
2, 2, " ESC - EXIT ", O,

4, 15, "l-Very Low; 0.70",1,

5, 15, "2-Low; 0.85",2,

6, 15, "3-Nominal; 1.00", 3,

7, 15, "4-High; 1.15",4,

8, 15, "S5-Very High; 1.30", 5,

9, 15, "6-Extra High; 1.65", 6,

’
11, 1, "Select the appropriate Software Cost Driver Rating:

99, 99, ", 99
b

static struct pmenu intelcqd =
{0, FALSE, O,

2, 5,

1, 2, " TIME (Exection time constraint)™, 0,
2, 2, " ESC - EXIT ", O,

4, 15, "1 - Nominal; 1.00", 1,

5, 15, "2 - High; 1.11", 2,

6, 15, "3 - Very High; 1.30", 3,

7, 15, "4 - Extra High; 1.66",4,
10, 3, "Select the appropriate Software Cost Driver Rating:
99, 99, ™",99

b
static ruct pmenu intelcS =

{0, FA. ,E, O,

2, 5,

T, 2, " STOR (Main storage constraint)", O,
2, 2, " ESC - EXIT ", O,

4, 15, "1 - Nominal; 1.00", 1,

5, 15, "2 - High; 1.06", 2,

6, 15, "3 - Very High; 1.21", 3,

7, 15, "4 - Extra High; 1.56",4,
10, 3, "Select the appropriate Software Cost Driver Rating:
99, 99, "",99

b

static struct pmenu intelcé =
{0, FALSE, O,
o

<, 5,

1, 2, " VIRT (Virtual machine volatility)", O,

2, 2, " ESC - EXIT ", 0,

4, 15, "1 - Low; 0.87", 1,

5, 15, "2 - Nominal; 1.00", 2,

6, 15, "3 - High; 1.15", 3,

7, 15, "4 - Very High; 1.30", 4,
10, 3, "Select the appropriate Software Cost Driver Rating:
23, 929, "",99

b

static struct pmenu intelc7 =
{0, FALSE, 0O,

2, 5,

1, 2, " TURN (Computer turnaround time)", O,
2, 2, " ESC - EXIT ", O,

4, 15, "1 - Low; 0.87", 1,

80

"0,

"0,

“IOI

"IOI

5, 15, "2 - Nominal; 1.00", 2,
6, 15, "3 - High; 1.07%, 3,
7, 15, "4 - Very High; 1.15",4,

10, 3, "Select the appropriate Software Cost Driver Rating:

99, 99, "n,99
Vs

static struct pmenu intelc8 =
{0, FALSE, O,

static struct pmenu intelc9 =
{0, FALSE, O,

6,
2, " AEXP (Applications experience)", 0,
2, " ESC - EXIT ", O,

15, "1 - Very Low; 1.29", 1,
15, "2 - Low; 1.13", 2,

15, "3 - Nominal; 1.00", 3,
15, ™4 - High; 0.91",4,

15, "5 - vVery High; 0.82", 5,
3,
39, "",99

L N T T T

O
(Vo2 Sl e RN e IRV I OOl (S ISl oV
Y

static struct pmenu intelcl0 =
{0, FALSE, O,

static struct pmenu intelcll =
{0, FALSE, O,
5

Loy 5,

1, 2, " VEXP (Virtual machine experience)®, 0,

2, 2, " ESC - EXIT ", O,

4, 15, "1 - Very Low; 1.21", 1,

S, 15, "2 - Low; 1.10", 2,

6, 1%, "3 - Nominal; 1.00", 3,

7, 15, "4 - High; 0.90",4,
10, 3, "Select the appropriate Software Cost Driver Rating:
29, 929, "",99

b

81

2, 6,

i, 2, " ACAP (Analyst capability)”, O,
2, 2, " ESC - exiT ", O,

4, 15, "1 - Very Low; 1.46", 1,

5, 15, "2 - Low; 1.19", 2,

6, 15, "3 - Nominal; 1.00%, 3,

7, 15, "4 - High; 0.86",4,

8, 15, "5 - Very High; 0.71", 5,
11, 3, "Select the appropriate Software Cost Driver Rating:
39, 99, "",99

b

"Select the appropriate Software Cost Driver Rating:

2, 6,

1, 2, " PCAP (Programmer capability)"™, O,
2, 2, " ESC - EXIT ", O,

4, 15, "1 - Very Low; 1.42", 1,

5, 15, "2 - Low; 1.17", 2,

6, 15, "3 - Nominal; 1.00", 3,

7, 15, "4 - High; 0.86",4,

8, 15, "5 - Very High; 0.70", 5,
11, 3, "Select the appropriate Software Cost Driver Rating:
29, 99, "",99

b

"’OI

static struct pmenu intelcl2 =
{0, FALSE, O,

2, 5,
1, 2, " LEXP (Programming Language experience)", 0,
2, 2, " ESC - EXIT ", O,

4, 15, "1 - Very Low; 1.14", 1,

5, 15, ™2 - Low; 1.07%, 2,

6, 15, "3 - Nominal; 1.00", 3,

7, 15, "4 - High; 0.95",4,
10, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",939

b

static struct pmenu intelcl3 =
(0, FALSE, O,

2, 6,

1, 2, " MODP (Use of modern programming practices)®, 0,
2, 2, " ESC - EXIT ", O,

4, 15, "1 - Very Low; 1.24", 1,

5, 15, "2 - Low; 1.10", 2,

6, 15, "3 - Nominal; 1.00", 3,

7, 15, "4 - High; 0.91", 4,

8, 15, "5 - Very High; 0.82", 5,
11, 3, "Select the appropriate Software Cost Driver Rating: ",0,
39, 99, "",99

}:

static struct pmenu intelcld =
{0, FALSE, O,

2, 6,
1, 2, " TOOL (Use of software tools)", O,
2, 2, ° ESC - EXIT ", O,
4, 15, "1 - Very Low; 1.24", 1,
5, 1%, "2 - Low; 1.10", 2,
6, 15, "3 - Nominal; 1.00", 3,
7, 15, ™4 - High; 0.91", 4,
8, 15, "% - Very High; 0.83", 5,
11, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99
};
static struct pmenu intelcl5 =
{0, FALSE, O,

2, 6,

1, 2, " SCED (Required development schedule®, O,
2, 2, " ESC - EXIT ", 0O,

4, 15, "1 - Very Low; 1.23", 1,

5, 15, "2 - Low; 1.08", 2,

6, 15, "3 - Nominal; 1.00", 3,

7, 15, ™4 - High; 1.04",4,

8, 15, "5 - Very High; 1.10", 5,

11, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99

/* Function which lists all the data files (*.PRF) */
/* in the current directory. */

int filelist (void)
{

82

struct f£fblk ffblk;

int done4;

printf("Data file listing: \n\n"); /* prf for profile */
doned = findfirst ("*.prf",&ffblk,0); /* finds first .prf file */
while (!doned)

{

printf (" $s\n", £ffblk.ff name);

done4 = findnext (&ffblk); /* finds the next .prf file */
}
return(l);

/* This function accepts numerous pointers to various strings */
/* which allows the user to select variables from the display */
/* and change the value of current simulation input variables. */

void model in(float *fptr,float *PCNT,int *KDSI,float *results,int mode,char
fnamel (], float *EAF1l, flcoat *cdrate,int donel, float mfl)
{

/* Declarations for this function */
int choicel, choice2, choice3;

float exupl,exp2;

char stringlf{)
char string2{]

"Organic";
"Semi-detached"®;

char string3{] "Embedded";
char string(14];
switch(mode) /* mode variable is passed in to function */

{ /* used to display one of the 3 strings declared */
/* above for display on this screen; switch/case format*/
case 1:
strcpy(string,stringl);
break;
case 2:
strcpy(string, string2);
break;
case 3;:
strcpy (string, string3):;
break;
}

/* clears screen and displays variables on screen in below format */

while ('donel)
{

clrscr();
prlntf(" ***‘k***********************************\n");
print£(" MODEL INPUTS for %s \n", fnamel; ;
printf(" %s Mode\n",string);
prlntf(" R ******ﬂ********************************\n\n“)’-
printf (" 1. INUDST: $5.3¢F 8. (1) TPFMQAI[1l]:
%5.3f\n", fptr(0], fptr(12]);
printf (" 2. ADMPPS: $5.3f (2) TPFMQA[2]):
$5.3f\n", fptr(1l], fptr(13]);
printf (" 3. HIREDY: %5.3f (3) TPFM2JA[3]:
$5.3£\n", fptr (2], fptr(14]);
print £ (" 4. AVEMPT: $5.3€£ (4) TPFMJA[4]:
%5.3f\n", fptr (3], fptr{15]);
printf£ (" 5. TRPNHR: %5.3f (5) TPFMDA[S]:

¥5.3f\n", fptr (4], fptr(l6]);

83

%5.
%5.
%5.

%5.

%S

%5

$5.

printf (" 6. ASIMDY: $5.3fF (6) TPFMQA([6]:
3f\n", fptr (5], fptr(17});

print£ (" 7. (1) TNERPKI[1l]: $5.3f (7) TPFMQA(7]:
3f\n", fptr(6], fptr(18]);

printf (" (2) TNERPK[2]: %5.3f (8) TPFMQA([8]:
3f\n", fptx (7], fptr(19});

print £ (" (3) TNERPK[3]: %$5.3f (9) TPFMQAI[9]:
3f\n", fptr(8], fptr(20]);

printf (" (4) TNERPK([4]: %£5.3fF (10) TPFMQA(10]:
.3f\n", fptr([9], fptr(21]);

printf (" (5) TNERPK[5]: %5.3f 9. DEVPRT:
.3f\n", fpt{10], fptr([22]);

printf (" (6) TNERPK[6]: %5.3f 10. DSIPTK:
3f\n\n", fptxr (11}, fptr(23]);

printf (" 11. Size of project (KDSI): %d\n\n",KDSI[O0]):

printf (" 12. EXIT and SAVE changes.\n\n");

/* allows user to select a variable using assigned number and */

/* change current value by displaying just the variable selected */
/* once the new value is entered fuction returns to the display */
/* screen for user to see changes and allow additional changes */

printf(® Enter number of parameter you wish to change: ");
scanf ("%d", &choicel);

switch(choicel)
{
case 1:
clrscr():
gotoxy (10,10);
printf ("Enter Initial Under Staffing Level Factor: ");
scanf ("$f", &fptr[0]);
break;
case 2:
clrscr();
gotoxy (10,10);
printf ("Enter Average Daily Manpower per Staff Member: "):
scanf ("$£f", &fptr(l]);
break;
case 3:
clrscr();
gotoxy (10,10);
printf ("Enter Hiring Delay: ");
scanf ("$f",&fptr(2]);
break;
case 4:
clrscr();
gotoxy (10,10);
print £ ("Enter Average Employment Time:. “);
scanf ("%f",&fptr(3]),
break;
case 5:
clrscr();
gotnxy (10,10);
printf ("Enter Training Overhead: ");
scanf ("$£", &fptr{4]);
break;
case 6:
clrscr ()
gotoxy (10,10) ;
printf ("Enter Average Assimilation Delay: "):;

84

scanf ("%£",&fptr(5]);
break;

/* The TNERPK has several entries for this one variable by using */
/* a second set of values for each entry the user can change one */
/* entry at a time vice entring all the values each time even if */
/* one value needed to be changed. */

case 7:
printf (" Enter subscript value of TNERPK parameter you wish to
change: ")
scanf ("%d", &choice2) ;
switch (choice?2)
{
case 1:
clrscr();
gotoxy (10,10) ;
printf ("Enter Error rate([l]l: ");
scanf ("%£f", &fptr{6]);
break;
case 2:
clrscr();
gotoxy (10,10) ;
printf ("Enter Error rate([2]: ");
scanf ("$f", &fptr(7]);
break;
case 3:
clrscr () ;
gotoxy (10,10) ;
printf ("Enter Error rate(3]: ");
scanf ("%£f", &fptr(8]);
break;
case 4:
clrscr();
gotoxy (10,10);
printf ("Enter Error rate[4]: ");
scanf ("S$£f", &fptr(3));
break;
case 5:
clrscr ()
gotoxy (10,1C) ;
printf ("Enter Error rate[5]: ");
scanf ("$£f", &fptr(10]);
break;
case 6:
clrscr();
gotoxy (10,10) ;

printf ("Enter Error rate[6]: ");
scanf ("$f", &fptr(11]));
break;
default:
break;
}
break;

/* TPFMQA set-up same way as TNERPK for same reasons */

case 8:

85

printf (" Enter subscript value of TPFMQA parameter you wish
to change: ");
scanf ("%d", &choice3) ;
switch (choice3)
{
case 1:
clrscr () ;
gotoxy (10 10);
printf ("Enter ".anned Fraction of Manpower for QA[l]: ");
scanf ("$£f", &fptr(12]);
break;
case 2:
clrscr();
gotoxy (10,10} ;
printf ("Enter Planned Fraction of Manpower for QA[2}: ");
scanf ("$£f", &fptr[13]);
break;
case 3:
clrscr();
gotoxy (10,10) ;
printf ("Enter 2lanned Fraction of Manpower for QA(3}: ");
scanf ("$£", &fptr(14));
break;
case 4§:
clrscr();
gotoxy (10,10);
printf ("Enter Planned Fraction of Manpower for QA[4]: ™),
scanf ("$£", &fptx [15])
break;
case 5:
~lrscr{();
gotoxy (19,10) ;
printf ("Enter Planned Fraction of Manpower for QA[S]: ");
scanf ("$£", &fptr(16]);
break;
case 6:
clrscr();
gctoxy (10,10);
printf ("Enter Planned Fraction of Manpower for QA[6]: "):
scanf ("$£", &fptr[17]);
break;
case 7:
clrscr();
gotoxy (10, 10) :
printf ("Enter Planned Fraction of Manpower for QA{7]: ™);
scanf ("%f", &fptr(18]);
break;
case 8:
clrscr () ;
gotoxy (10,10} ;
printf ("Enter Planned Fraction of Manpower for QA{8]: "):
scanf ("$f", &fpir(19]);
break;
case 9:
clrscr () ;
gotoxy(10,10);
printf ("Enter Planned Fraction of Manpower for CA[9: ")
scanf ("$f", &fptr{20]);
break;
case 10:
clrscr();

86

gotoxy (10,10);
printf ("Enter Planned Fraction of Manpower for QA{10]: ");
scanf ("%f",&fptr(21]);
break;
default:
break;

}
break;
case 9:
clrscr():
gotoxy (10,10) ;
printf ("Enter DEVPRT: ");
scanf ("$£f",&fptr[22}));
break;
case 10:
clrscr():;
gotoxy (10,10) ;
printf ("Enter Nominal Potential Productivity MD percent
\n\n") ;
print£ (" Percent MD for tests: ");
scanf ("$£", &PCNT[0]);
printf("\n Please be consistent with TPFMQA input values)\n");
printf (" Percent MD for QA: "y,
scanf ("$£f", &PCNT{1]) ;
printf (" Percent MD for Rework: ");
scanf ("%£",&PCNT(2]);

break;
case 11:
clrscr():;
gotoxy (10,10) ;
printf ("Enter new Size of project (KDSI): "),
scanf {("$d", &KDSI[0]);
break;
default:
donel = 1;
} /* switch choice 1 */
switch (mode)
{
case 1:
expl = 1.05;
exp2 = 0.38;
calc(results,KDSI,EAF1l, cdrate,mfl, expl, exp2);
break;
case 2:
expl = 1.12;
exp2 = 0.35;
calc(results,KDSI,EAF1, cdrate,mfl, expl, exp?2);
break;
case_3:
expl = 1.20;
exp2 = 0.32;
calc (results,KDSI,EAFl, cdrate,mfl, expl, exp2);
break;
}
/* Nominal productivity is one of 3 variables passed into */
/* the simulation model that need algorithmic calculations. */
/* This function will be discussed in detail below */
fptr{23] = prod(PCNT, results{0], results[2],KDSI);

87

} /* while donel */

}

/* This function gives the user the cpportunity to view current */
/* values assigned to the COCOMO 15 cost drivers and make changes */

/* if necessary.

All cost drivers are defaulted to 1.00.

*/

void icocomo_in(float *rate, float *EAFl,int done3,char *fnamel)

{

/* rate is an array which hold the values for determining EAF for COCOMO */
int choice,i;
int ¢p1,CD2,CD3,CD4,CDS,CD6,CD7,CD8,CD9,CD10,CD11,CD12,CD13,CD14,CD15;

/* clears screen and displays the 15 cost drivers and values */

while (!done3)

{

clrscr();

printf ("
printf ("
printf ("
printf ("
printf ("
printf ("
printf ("
printf ("
printf ("
printf ("
printf ("
printf ("
printf ("
printf ("
printf£ ("
printf ("
printf ("
print £ ("
printf ("
printf ("

‘k*\n“) ;

INTERMEDIATE LEVEL COCOMO MODEL INPUTS

for %s
***************************************k******\n\n") ;

WO d W

10.
12.
13.

14.
15.

RELY:
DATA:
CPLX:
TIME:
STOR:
VIRT:
TURN:
ACAP:
AEXP:
PCAP:
VEXP:
LEXP:
MODP :
TOOL:
SCED:

16.

complete.\n\n");

/*
/*
/k
/*

printf ("

scanf ("%d", &choice);
switch{(choice)

{

case 1:
CDP1l = wn_popup(0, 5, 15,
switch (CD1)
{
case 0:
break;

case 1:
rate (0]
break;

case 2:
rate (0]

= 0.75;

= 0,88;

88

*/

Select Cost Driver and press [Enter]:

50,

Press

\n");
\n", fnamel);

$1.2f\n", rate[0]);
%$1.2f\n", rate{1]);
s1.2f\n", rate(2]);
%1.2f\n", rate[3]);
%1.2f\n", rate([4]);
%1.2f\n", rate[5]);
%$1.2f\n", rate{6]);
$1.2f\n", rate[7]);
$1.2f\n", rate[8])
%1.2f\n", rate{9])
%1.2f\n", rate[10]
$1.2f\n", rate{11]
%1.2f\n", rate[12});

$1.2f\n", rate[13]);

$1.2f\n\n", rate[14]1);

[16 or 0] when entries are

)
)

.
I3
’

allows user to select one of the above cost drivers by number */
using the case statments t. ® program calls specific pop-up */

menus for the user to select specific values from and return */
to display screen to see changes.

")

10, wat, bat, &intelcl, TRUE):;

break;

case 3:
rate{0] = 1.00;
break;

case 4:
rate[0] = 1.15;
break;

case 5:
rate(0] = 1.40;
break;

}

break;

case 2:

CD2 = wn_popup(0, 5

switch (CD2)

{

case 0:
break;

case 1:
rate[l] = 0.94;
break;

case 2:
rate([1l] = 1.00;
break;

case 3:
rate[l] = 1.08;
break;

case 4:
rate(l] = 1.16;
break;

}
break;

case 3:

CD3 = wn_popup (0, 5
switch (CD3)
{
case 0:
break;

case 1:
rate{2] = 0.
break;
case 2:
rate(2] =
break;
case 3:
rate(2] = 1
break;
case 4:
rate(2] = 1.
break;
case 5:
rate[2] =]
break;
case 6:
rate(2)]
break;

70;

0.85;

.00;

15;

.30;

]
=

.65;

break;
case 4:

15, 50, 10, wat,

15, 50, 10, wat,

89

bat,

bat,

&intelc2,

&intelc3,

TRUE) ;

TRUE) ;

CD4 = wn_popup(0, 5, 15, 50, 10, wat, bat, &intelcd4, TRUE);
switch (CD4)
{
case (:
break;

case 1:
rate(3] = 1.00;
break;
case 2:
rate{3]
break;
case 3:
rate[3] = 1.30;
break;
case 4:
rate[3]
break;

L]
=

.11,

H
=

.66;

}
break;
case 5:
Cb5 = wn_popup(0, 5, 15, 50, 10, wat, bat, &intelc5, TRUE);
switch (CD5)
{
case 0:
break;

case 1:
rate[4] = 1.00;
break;
cage 2:
ratef4] = 1.06;
break;
case 3:
rate (4]
break;
case 4:
rate[4]
break;

i
—

.21;

[}
[

.56;

}
break;
case 6:
CD6 = wn_popup(0, 5, 15, 50, 10, wat, bat, &intelc6, TRUE};
switch (CD6)
{
case 0:
break;

case 1:
rate([5] = 0.87;
break;
case 2:
rate([5]
break;
case 3:
rate[5])
break;
case {:
rate[5]
break;

i
—

.00;

I
—

.15;

[
-

.30;

90

break;
case 7:
CD7 = wn_popup(0, 5, 15, 50, 10, wat, bat, &intelc7, TRUE);
switch (CD7)
{

case (:
break;

case 1:
rate([6] = 0.87;
break;

case 2:
rate([6] = 1.00;
break;

case 3:
rate([6] = 1.07;
break;

case 4:
rate(6] = 1.15;
break;

}

break;

case 8:

CD8 = wn_popup(0, 5, 15, 50, 10, wat, bat, &intelc8, TRUE);
switch (CD8)
{
case 0:
break;

case 1:
rate([7]
break;

case 2:
rate (7]
break;

case 3:
rat2[7}
break;

case {:
rate[7] = 0.86;
break;

case 5:
rate[7] = 0.71;
break;

]
—

.46;

1.19;

1.00;

}
break;
case 9:
CD9 = wn_popup(0, 5, 15, 50, 10, wat, bat, &intelc9, TRUE);
switch (CD9)
{
case 0:
break;

case 1:
rate([8] = 1.29;
break;

case 2:
rate[8]
break;

case 3:
rate(8]

1
—

.13;

i
—

.00;

91

break;
case 4:
rate[8]
break;
case 5:
rate(8]
break;

I
o

.91;

ft
(]

.82;

}
break;
case 10:
CD10 = wn popup (0, 5,
switch (CD10)
{
case 0:
break;

case 1:
rate[9]
break;

case 2:
rate([9]
break;

case 3:
rate[9]
break;

case 4:
rate([9]
break;

case 5:
rate (9]
break;

]
o

.42;

]
[

.17;

]
[

.00;

[
o

.86;

[]
(o)

.70;

}
break;
case 11:
CD11 = wn popup{(0, 5,
switch (CD11)
{
case 0:
break;

case 1:
rate[10]
break;

cage 2:
rate[10]
break;

case 3:
rate[10]
break;

case 4:
rate[10]
break;

i
-

.21;

[]
-

.10;

]
f

.00;

#
o

.90;

}
break;

case 12:

15,

15,

50,

50,

10,

10,

wat,

wat,

CD12 = wn_popup(0, 5, 15, 50, 10, wat,

switch (CD12)

{

case 0:
break;

92

bat,

bat,

bat,

&intelclQO, TRUE):

&intelcll,

&intelcl2,

TRUE) ;

TRUE) ;

case 1:
rate[1l1]
break;

case 2:
rate(1l1l)
break;

case 3:
rate{1l1l]
break;

case 4:
rate[1l1]
break;

}

break;

case 13:

.14;

.07;

.00;

.95;

CD13 = wn_popup(0, 5, 15, 50, 10, wat, bat, &intelcl3, TRUE);

switch (CD13)

{
case 0U:
break;

case 1:
rate([12]
break;

case 2:
rate(12)
break;

case 3:
rate(12]
break;

case 4:
rate{12]
break;

case
rate([12]
break;

}

I

f

break;

case 14:
CD14 = wn_popup (0,
switch (CD14)

{
case 0:
break;

case 1:
rate([13]
break;

case 2:
rate([13]

. break;

case 3:
rate([13]
break;

case 4:
rate[13]
break;

case 5:
rate[13]
break;

.24;

.10;

.00;

.91;

.82;

.24;

.10;

.00;

.91;

.83;

3,

15,

93

50,

10,

wat,

bat,

&intelcld,

TRUE} ;

break;

/* for the schedule cost driver need both the EAF value */
/* but also the actual percent of schedule compression */
/* or expangion for later COCOMO calculations. */

case 15:
CD15 = wn_popup(0, 5, 15, 50, 10, wat, bat, &intelcl5, TRUE);
switch (CD15)
{
case O:
break:

case 1:
rate(1l4]) = 1.23;
EAF110] = 0.75; .
break;

case 2:
rate{14] = 1.08;
EAF1{0] = 0.85;
break;

case 3:
rate[14) = 1.00;
break;

case 4:
rate(l14]) = 1.04;
EAF1{0] = 1.30;
break;
case 5:
ratefl14] = 1.10;
EAF1(0] = 1.60;
break;
}
break;
default:
done3 = 1;
break;
}

} /* while done3 */
}

/* This function saves all of the current data for each project */
/* under a specific name specified by the user */

void file save(float *DSMI, float *cdrate,float *PCNT,char *fnamel, float EAF, int
*KDSTI, int mode, float mfl)
{

if ((fout = fopen (fnamel, "wb™))==NULL)
{

fprintf (stderr, "Unable to open file %s \n", fnamel))
}

else

{
printf ("\n\n\nSaving %s\n\n\n\n", fnamel) ;
printf("\n\n\nSaving %¥s\n", fnamel) ;

fwrite((void *) DSMI,26 * sizeof(flocat),l, fout);
fwrite ((void *) KDSI,sizeof(int),1, fout);

94

fwrite ((void *) &EAF,sizeof (float),l, fout);

fwrite ((void *) cdrate,1l5 * sizeof(float),1l,fout);
fwrite ((void *) PCNT,3 * sizeof(float),1l,fout);
fwrite ((void *) &mode, sizeof (int), 1, fout);

fwrite ((void *) &mfl,sizeocf (float), 1, fout);

fclose (fout) ;

}

/* This function provides the avenue to interface the output */

/* variables from this program into the simulation model via a */
/* text file and pass certain other variables to the TESTIO */

/* program via a binary file for reporting estimates and actual */
/* results and error rates. */

void file prnt (float TOTMD1, flocat TDEV1, int *KDSI,flcat *DSMI)
{

FILE *fpout;

long 1;

/* need to change to long, once multiplied by 1000 */
/* size could be out of integer range. */

1 = KDSI(0]*1000.0;
/* Writes to textfile SIMONE.DNX */

fprintf (textfile, "C RJBDSI=%1d\n", 1);

fprintf (textfile, "C TOTMD1=%5.2£f\n", TOTMD1):;

fprintf (textfile, "C TDEV1=%5.2f\n", TDEV1);

fprintf (textfile, "C INUDST=%5.2f\n", DSMI[0]);

fprintf (textfile, "C ADMPPS=%5.2f\n", DSMI{1l]);

fprintf (textfile, "C HIREDY=%5.2f\n", DSMI(2]);

fprintf (textfile, "C AVEMPT=%5.2f\n", DSMI([3]);

fprintf (textfile, "C TRPNHR=%5.2f\n", DSMI(4]);

fprintf (textfile, "C ASIMDY=%5.2f\n", DSMI[5]);

fprintf (textfile,"T TNERPK=%5.2f %5.2f %5.2f %5.2f %5.2f %5.2f\n",
DSMI(6),DSMI[(7],DSMI[8],DSMI(9]},DSMI(10],DSMI[11]);

fprintf(textfile,"T TPFMQA=%5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f
% S . 3 f % 5 . 3 £ 0 \ n " ’
DSMI[12),DSMI(13},DSMI{14]),DSMI[(15]),DSMI[16],DSMI[17],DSMI[18],DSMI[19],DSMI[2
0],DSMI[?1]);

fprintf (textfile, "C DEVPRT=%5.2f\n", DSMI{22]);

fprintf (textfile,"C DSIPTK=%5.2f\n", DSMI[23]);

fclose (textfile) ;

/* Writes to binary file OUTFILE.DNX */
if ((fpout = fopen("outfilel.dnx","wb"))==NULL)
{
fprint f (stderr, "Unable to open file %s \n","outfilel.dnx");
}
else
{

/* write Estimated Effort and Estimated Schedule */
fwrite ((void *) &TOTMD1, sizeof (float),l, fpout);
fwrite ((void *) &TDEV1,sizeof (float), 1, fpout):
fclose (fpout) ;

95

}
/* Part of the calculation for Nominal Productivity requires */
/* interpolation. This function accepts staff size variable */
/* and returns communication overhead factor for use in determining */
/* Nominal Productivity. */
float interp(float stf size)
(float covhd:
if ((stf_size >= () && (stf size <= 95))
{ covhd = (({stf_size-0)* .015)/5);
if ((stf size > 5) && (stf_size <= 10))
covhd = (((stf_size-5)* .045)/5) +.015;
if ({(stf size > 10) && (stf size <= 15))
covhd = (((stf_size-10)* .075)/5) + .06;
if ((stf size > 15) && (stf size <= 20))
covhd = (((stf_size-15)* .105)/5) + .135;
if ((stf size > 20) && (stf_size <= 25))
covhd = (({(stf_size-20)* .135)/5) + .24;
if ((stf_size > 25) && (stf _size <= 30))
covhd = (((scf_size-25)* .165)/5) + .375;
if (stf size >= 30)
covhd = .54;
}

return covhd;

/* This €unction does the Nominal Productivity calculations */
/* TOTMD1 - Effort passed from main function in man-days */

/* TDEV2 - Schedule in months not days! */

/* PCNT - array from main function which passes %Testing, $QA */
/* and %Rework for man-days */

/* MM - Effort in man-months */

/* stf_size - Average Staff Size = MM/TDEV2 */
/* DEVMD - Development man-days */

/* ADP - Actual Development Productivity */
/* covhd - Communication Overhead */
/* product - Nominal Productivity */

float prod(float *PCNT, float TOTMD1, float TDEVZ2,int *KDSI)
{

float MM, stf size,DEVMD,ADP,covhd;

float prcduct;

MM = TOTMD1/19;

96

}

/*
/*
/n
/k
/*

/
/*

stf size = MM/TDEVZ;

DEVMD = (1-(PCNT[O]+PCNT[1]+PCNT{2]))*TOTMD1;

ADP = (KDSI{0] * 1000.0)/DEVMD;

covhd = interp(stf size); /* call interpolation function */
product = ADP/ (0.6 * (1.0-covhd));

return product;

This function completes COCOMO calculations for input into */
simulation model */

result array is used to hold man-day and schedule results */

EAFl contains the percent to multiply TDEV by from cost driver 15 */
mfl, expl and exp2 are the coefficients and exponents passed */

in from main function */

void calc(float *result,int *KDSI,float *EAF1l,float *cdrate,flcocat mfl, float
expl, float exp2)

{

19.

}
/*

/ *
/

int 1;
float EAF; /* Estimated Adjustment Factor */
EAF = 1.00;
for (i=0;1i<15;i++)
{
EAF *= cdrate[i]; /* Calculate the EAF by multiplying each */
/* cost driver by one another */
}
/* Total man-days calculation */
result{0] = mfl * (pow(KDS1 0),expl)) * 19.0 * EAF;

/* if cost driver 15 (schedule) is nominal then calculations */
/* are straight forward. If not you must divide the man-days */
/* by cdrate[l4] or calculate total man-days as if schedule */
/* was nominal. */

if (EAF1(0} '= 1.00)

result[l} = 2.5 * pow(((result(0]/1%.0)/cdrate[1l4]),exp2) * EAF1l([0] ~*
o result[2] = 2.5 * pow({(result[0]/cdrate([14])/19.0),exp2) * EAF1(0];
;lse
{ result(l) = 2.5 * pow((result(G]/19.0),exp2) * 19.0;

result [2] = 2.5 * pow{{(result[0]/19.0),exp2);

result (3] = EAF;
return;

Small function. that simply initializes all the */
cost drivers to 1 */

vo1d initial (float *cdrate)

{

int i
for(1=0;1 < 15; 1i++)
{
cdrate(i] = 1.00;
1

'
return;

97

void main ()

{
int i, done=0,donel=0, done3=0, done5=(0, doneb6=0;
int sel, sell, sel2, sel3, seld4, sel5;

int mode; /* One of 3 COCOMO modes */
int KDSI[Z2]; /* Stores size and counter */
float EAF1({1l]; /* Stores schedule cost driver percent */

float cdrate{15], DSMI(26], PCNT[3],results{d4];
float TOTMDl, TDEV1, TDEVZ2, ADP, mfl, expl, exp2;
char fnamel{13];

char fname2(13];

char string(25];

char stringl(25];

int ch, basic;

/* creates textfile which is interface with simulation model */
textfile = fopen ("SIMONE.DNX", "w");

/* initializes scedule cost driver to 1 */

EAF1[0} = 1.00;

/* bat is the boarder attribute for the pop=-up window */
/* sets background to blue and boarder to white */

bat = v_setatr (BLUE,WHITE,O0,0);

/* wat 1s the window attribute for the pop-up window */
/* sets background to blue and text to white */
wat = v setatr (BLUE,WHITE,0,0);

clrscr{);
/* this while statement gets program started always initiated on */
while (!doneé)
{
clrscr(); /* pop-up initial menu */
/* allows user to go to main menu */
/* create a new project or EXIT */
sel - wn popup(0, 5, 10, 55, 10, wat, bat, &intelc, TRUE);

switch (sel)
{

case 1: /* user selected to go to main menu */
doneb5=0;
while (!'done5)
{
~lrscr(): /* Main Menu will allow user to */
/* list, select, run simulation */
/* or exit this menu */

sel2 = wn_popup(0, 5, 10, 55, 12, wat, bat, &intelc0, TRUE);

switch (sel2)
{

case 1: /* user selected to list data files */
filelist () /* calls function to list all *.prf files */
/* no break; continues to case 2 */
casgse 2. /* user can lcok at list and enter file name *‘/

printf("\n\n:> Enter project filename: ");

scanf ("%s", &fnamel) ;

/* if name of file is mis-entered program goes back to */
/* main menu */

98

if ((fin = fopen(fnamel, "rb"))==NULL)
{
fprint £ (stderr, "Unable to open file %s to read\n", fnamel)
continue;
}
/* read in the data of the selected filename */
fread ((void *) DSMI,26 * sizeof(float),l,£fin);
fread((void *) KDSI,sizeof(int), 1, fin);
fread((void *) &results[3],sizeof(float),1l,£fin);
fread((void *) cdrate,15 * sizeof(float),1l,fin);
fread((void *) PCNT,3 * gsizeof(float),1l,fin):
fread((void *) &mode,sizeof(int),1,fin);
fread ((void *) &mfl,sizeof(float),l,fin};
fclose(fin);
/* re-intialize */
donel = 0;

/* function described above which allows user to display */
/* on screen the variables for the simulation model less */
/* the COCOMO variables */

model in(DSMI,PCNT,KDSI, results,mode, fnamel, EAF1l, cdrate,donel, mfl);

if {resulta[3]==1.00) /* checks if EAF = 1.00 */
{
clrscr(); /* gives user option to continue */
/* using basic model or use intermediate */
sel3 = wn_popup(0, 5, 10, 50, 10, wat, bat, &intelc2l, TRUE);
switch(sel3)
{
case 1: /* user selected basic model */
basic = 1;
initial {cdrate); /* Basic model EAF values must */

break; /* all be 1.00. This sets all */
/* cost drivers to 1.00 */
case 2: /* uger selected intermediate model */

basic = 0;
initial (cdrate);
/* Displays cost driver screen; allows user to */
/* set cost drivers to desired level */
icocomo_in(cdrate,EAF1l,done3, fnamel) ;
break;
} /* switch sel3 */
} /* 1f */
else /* if EAF is other than 1.00 */
{
/* displays cost drivers values and */
/* allows user to manipulate */
basic = 0;
icocomo_in(cdrate, EAFl,done3, fnamel) ;
}
clrscr();
/* pop-up menu for user to select COCOMO mode */
mode = wn _popup(0, 5, 10, 50, 10, wat, bat, &intelcz0, TRUE);

switch (mode)
{
case 1: /* Organic mode */
if (basic != 1)
{

mfl = 3.2; /* sets coefficient and exponents */

99

}
else

{

}

expl = 1.05; /* for man-days calculation */

exp2 = 0.38; /* for schedule calculation */

/* function that actually does the COCOMO calculations */
calc(results,KDSI,EAFl,cdrate,mfl, expl, exp2);

mfl = 2.4;

break;
case 2: /* Semi-detached mode */
mfl = 3.0;
expl = 1.12;
exp2 = 0.35;
calc(results,KDSI,EAF1l, cdrate, mfl, expl,expl);
break;
case 3: /* Embedded mode */
if (basic !'= 1)
{
mfl = 3.6; /* sets coefficient and exponents */
}
else
{
mfl = 2.8;
}
expl 1.20;

exp2 = 0.32;
calc(results, KDSI,EAF1l,cdrate, mfl, expl, expl):
break;
} /* switch mode */

/* allows user to save current datafile under the same name */
/* or save the same or manipulated data under a new name */
sel4 = wn_popup(C, S5, 10, 55, 10, wat, bat, &intelc22, TRUE);

switch (seld)
{
case 1l: /* save in same file */
file save (DSMI, cdrate, PCNT, fnamel,
results[3],KDSI,mode, mfl);

break;
case 2: /* if you are changing the name of the file */
clrscr();
gotoxy (12,10); /* enter new name */
printf ("Enter the new project filename: ");

scanf ("$s",&string);

/* Program lets user enter more than 8 characters */

/* for filename. This copies first 8 characters */

/* into nem filename variable */
strncpy (fname2, string, 8);
string(8] = ’\0’; /* resets string to null */
strcat (fname2, ".prf"); /* automatically adds ".prf" */

/* writes new file to disk */
fnew = fopen(fname2, "wb") ;
fwrite ((void *) DSMI,26 * sizeof (float),l, fnew);
fwrite ((void *) KDSI,sizeof (int),l, fnew);
fwrite ((void *) &results[3],sizecf(float), 1, fnew):
fwrite ((void *) cdrate, 15 * sizeof (float),l, fnew);
fwrite ((void *) PCNT,3 * sizeof (float), 1, fnew);

100

fwrite ((void *) &mode, sizeof(int),1l, fnew);
fwrite((void *) &mfl, sizeof (float),1l, fnew);
fclose (fnew) ;

}

break;
case 3: /* allows user to exit into the simulation */
/* model automatically saving data first */
done5 = 1; /* Will cause exit to main menu */
done6 = 1; /* Will cause exit from program */

/* calls file prnt which outputs both SIMONE.DNX */

/* and OUTFILE.DNX. After completion of this function */
/* exit program to DOS which calls Simulation Model */
file prnt (results{0],results(l],KDSI,DSMI);

break;
case 4:
done5 = 1; /* Exits to main menu only */
doneé6 = 0;
break;
}
}
break;
case 2: /* your selection was to create a new project */

wn_init(); /* initialize a window for text entry */

w4 = wn_open(0,5,10,58,12,wat,bat); /* open window w4; similar */

/* to opening a file */

/* 5 is starting row; 10 is starting column; 58 is characters wide */

/* second 12 is number of rows; wat is the window attribute and */

/* bat the boarder attribute */
1f('w4) exit (1);

wn_printf(w4," \'n hok kk ok k ok ok kkokok ok AKXk Kk KAk K IMPORTANT

********************\n");

wn_printf(wd4,"™ \n\n In order to load a NEW project you must enter\n");
wn_printf (w4, " input data for both COCOMO and the Dynamic

Simulation.\n");

wn_printf (w4, " There are two forms on which all data must be

entered.\n");

wn_printf (w4, " Please enter the data as accurately

possible.\n\n\n\n");
wn_printf (w4, " Press [ANY KEY] to continue...");

/* wn_printf works similar to fprintf: prints to window vice file */
v_getch{();
wn_close (w4);

/* Front end; allows user to make necessary inputs for the */
/* Dynamic Simulation Model; Inputs appear one at a time and */
/* there must be an entry for each variable; all inputs will */
/* be stored in an array DSMI */

clrscr();

printf <N *****************‘k*********************\n") M

print £ (" * DYNAMIC SIMULATION MODEL INPUTS *\n");

printf (" ************‘k**************************\n\n") ;

print £(" Input the following: \n\n");

printf (" 1. Initial Under Staffing Level Factor: ");
scanf ("%£", &DSMI[0}]);

printf (" 2. Average Daily Manpower per Staff Member:

scanf ("%£f",&DSMI(1));

101

n).

‘

as

printf (" 3. Hiring Delay: %);
scanf ("S$£f",&DSMI[2]);

print £ (" 4. Average Employment Time: ");
gscanf ("S£f", &DSMI[3])
printf (" 5. Training Overhead: ");
scanf ("%£",&DSMI[4]);
printf (" 6. Average Assimilation Delay: ");
scanf ("%£",&DSMI[5]);
printf (" 7. Error Rate (Must enter 6 input values): \n");

for(i=0; i < 6; i++)
{

printf (" Error rate([%d]: ", (i+1));
gscanf ("$£", &DSMI[i+61}) ;
}
printf (" 8. Planned Fraction of Manpower for QA \n");
printf (" {(Must enter 10 input wvalues): \n");

for(i=0; 1 < 10; 1i++4)
{
printf (" Manpower for QA[%d]: ", (i+1));
scanf ("$£f",&DSMI [i+12]);
}
print £ (" 9. DEVPRT: ");
scanf ("$£",&DSMI[22]);
/* entries to the PCNT array are for nominal productivity calculation */

printf (" 10. Nominal Potential Productivity Man Day percent
inputs: \n\n");
printf (" Percent MD for tests: ");
scanf ("$f", &PCNT[0]) ;
printf ("\n (Please be consistent with TPFMQA input values)\n");
printf (" Percent MD for QA: "),
scanf ("%£", &PCNT([1])
printf (" Percent MD for Rework: ");

gcanf ("$£", &PCNT(2});

/* Allows user to make necessary inputs for the */
/* COCOMO Model; Inputs appear one at a time and */
/* there must be an entry for each variable */
clrscr();

prlntf(" **********-k****************************\n");
printf (" * COCOMO MODEL INPUTS *\n") ;
prlntf(" *****'k*********************************\n\n\n“);
printf (" Input the following: \n\n");
print £ (" 1. Estimated Project Size in KDSI: ";;

scanf ("%d", &KDSI[0]); /* string gets KDSI value */
print£(" 2. Enter the Project Name: ");

scanf ("%s", &stringl); /* string gets project name */

strncpy (fnamel, stringl, 8); /* since dos only recognizes the first */

/* 8 characters fnamel takes first 8 */

. /* characters in stringl */

string{8] = 7\0’; /* resets stringl to null set so next */

/* project name if short will not contain */

/* characters previously resident in stringl */
strcat (fnamel, ".prf"); /* automatically tags all proiect names */

/* with .prf to easily recognize projects */

clrscr();

sell = wn_popup(0, 5, 15, 55, 10, wat, bat, &intelclS8, TRUE):
/* selection of basic or intermediate COCOMO */

switch(sell)

102

{

case 1: /* user selection basic */
basic = 1;

EAF1([(0] = 1.00; /* initializes schedule percent to 100 */
initial (cdrate); /* sets all cost drivers to nominal */
break;

case 2: /* user selection intermediate */
basic = 0;
done3 = 0 ;
EAF1{0] = 1.00; /* initializes schedule percent to 100 */
initial (cdrate); /* sets all cost drivers to nominal */

icocomo_in(cdrate,EAFl,done3, fnamel); /* allows user to set */

/* cost driver values */
break;

}
clrscr():;

mode = wn_popup (0, 5, 10, 50, 10, wat, bat, &intelc20, TRUE);
/* select a mode */

switch (mode)

{

case 1: /* Organic */
if (basic != 1)
{
mfl = 3.2; /* sets coefficient and exponents */
}
else
{
mfl = 2.4;
}
expl 1.05;

exp2 = 0.38;
/* calls function to do COCOMO calculations */
calc(results,KDSI,EAF1l, cdrate,mfl, expl, exp2);

break;
case 2: /* Semi-detached */
mfl = 3.0;
expl = 1.12;
exp2 = 0.35;

/* calls function to do COCOMO calculations */
calc(results,KDSI,EAFl,cdrate,mfl, expl, expc);

break;
case 3: /* Embedded */
if (basic '= 1)
{
mfl = 3.6; /* sets coefficient and exponents */
}
else
{
mfl = 2.8;

}
expl = 1.20;
exp2 = 0.32;
/* calls function to do COCOMO calculations */
calc(results,KDSI,EAF1l, cdrate,mfl, expl,expl);
break;
}
/* calls function to do nominal productivity calculations */
/* results[0]=Total man-days; results{2]=schedule in months */
DSMI[23] = prod(PCNT, results[0],results([2],KDSI);

103

/* display/edit simulation model inputs */
model in(DSMI,PCNT,KDSI, results,mode, fnamel, EAF1l, cdrate,donel, mfl);

/* save updated file automatically */
file save (DSMI,cdrate,PCNT, fnamel, results([3],KDSI, mode, mfl);

/* this ends the input phase and initial COCOMO calculations */
/* the user now goes to NEW PROJECT MENU which enables the user */
/* to Display/Edit or run simulation model */
done = 0;
while (!done) /* New Project Menu loop */
{

clrscr():;

sel5 = wn_popup(0, 5, 10, 50, 10, wat, bat, &intelc23, TRUE);

/* New Project Menu */

switch (sel5)

{

case 1: /* user selected Display/Edit */

/* display or edit simulation model inputs */
model in(DSMI,PCNT,KDSI, results,mode,
fnamel, EAF1l, cdrate, donel,mfl);

if(results{3]==1.00) /* checks if EAF = 1.00 */
{
clrscr(); /* gives user option to continue */
/* using basic model or use intermediate */
sel3 = wn_popup(0, 5, 10, 50, 10, wat, bat, &intelc21,
TRUE) ;
switch(sel3)
{
case 1: /* user selected basic model */
basic = 1;
initial (cdrate); /* Basic model EAF values must*/

break; /* all be 1.00. This sets all */
/* cost drivers to 1.00 */
case 2: /* user selected intermediate model */

initial (cdrate);
/* Displays cost driver screen; allows user to */
/* set cost drivers to desired level */
basic = 0;
icocomo_in(cdrate,EAF1,
done3, fnamel) ;
break;
} /* switch sel3 */
} /* if */
else
/* if EAF is cother than 1.00 */
{
/* displays cost drivers values and */
/* allows user to manipulate */
basic = (;
icocomo_in(cdrate, EAF1,done3, fnamel) ;
}
clrscr();
switch (mode)
{
case 1: /* Organic mode */
if (basic != 1)
{
mfl = 3.2; /* sets coefficient and exponents */
}

104

else
{

mfl = 2.4;

}

expl = 1.05; /* for man-days calculation */
exp2 = 0.38;

/* function that actually does the COCOMO calculations */
calc(results,KDSI,EAFl, cdrate,mfl, expl, exp2);

break;

case 2: /* Semi-detached mode */
mfl = 3.0;
expl = 1.12;
exp2 = 0.35;
calc(results,KDSI,EAFl, cdrate,mfl,
expl, expl):
break;

case 3: /* Embedded mode */
if (basic !'= 1)
{
mfl = 3.6; /* sets coefficient and exponents */
}
else
{
mfl = 2.8;
}
expl = 1.20;
exp2 = 0.32;
calc(results,KDSI,EAF1l, cdrate,mfl, expl, exp2);
break;

} /* switch mode */
/* automatically save latest changes to file */
file save (DSMI,cdrate,PCNT, fnamel, results(3],KDSI, mode, mfl);

break;

case 2: /* user selected to run simulation model */
done = 1; /* allows user to exit to initial menu */
doneé = 1; /* allows user to exit out of program */

/* calls file prnt which outputs both SIMONE.DNX */
/* and OUTFILE.DNX. After completion of this function */
/* exit program to DOS which calls Simulation Model */
file_prnt (results(0], results(1],KDSI,DSMI);

break;
case 3:
done = 1; /* allows user to exit to initial menu */
break;
}
}
break;
case 3:
exit (1) /* EXITS FROM PROGRAM WITHOUT DOING SIMULATION */
}
}
exit (0); /* EXITS TROM PROGRAM WITH DOING SIMULATION */

105

/*
/*
/*
/*
/*

/*
/*
/ﬁ

/*
/*

APPENDIX C

AKAARA A AR A AR AR A AAAARARAARAAAAAAAAA AR A ARAARARRRAA AR AARAARARR A AN */

* Author: Richard W. Smith Advisor: Prof. Abdel-Hamid * */
* Program: OUTPUT1 Lang: C * x/
* Used Shareware <windows.h> in project environment * x/

AAAAAARKRARAAAAAAANARARRARARARANAAAAAARAAARNAAA R AR A A AR RN R A AR ek A AN */

This is one of 5 programs written and interfaced with the */
Dynamic Simulation Model. This particular program gathers */
outfile information from several files to generate reports. */

The following headers were used and needed to utilize the */
library functions used throughout this program. */

#include <stdio.h>
#include <math.h>
#include <conio.h>

void main(void)

{

/* Declarations for variables used within this program */

int i, k=0, m=0, KDSI[2], count, num;
float j, md, time, TOTMD1l, TDEV1l, diff, Jdiffl;
char string{8], dest(8], stringl(8], destl({8]:;
FILE *fpin, *fdata, *results;
/* initializes the dest (destination) string as null */
for (1i=0;i<8;i++)
dest i) = 7\Q’:

/* Read the outfile.dnx: Binary file used in reporting */
/* Easier to work with binary in this case */

if ((fdata = fopen("outfilel.dnx", "rb"))==NULL)
{
fprintf (stderr, "Unable to open file %s \n","outfilel.dnx");

}
else /* reads effort and schedule */

{

fread((void *) &TOTMD1,sizeof(float}), 1, fdata);
fread((void *) &TDEV1,sizeof(float), 1, fdata);

fclose (fdata); .

}

fpin = fopen("SIMONE.QUT","r"); /* get output from simulation */

/* GET EFFORT VALUE FROM SIMULATION OUTPUT FILE */
i = fgetc(fpin); /* get first character from output file */

while (i != 40) /* continue getting characters until ascii */
{ /* #40 7 (" */

i = fgetc(fpin);
}

106

i = fgetc(fpin);
while (i !'= 41) /* now get each char and save as string */
{
string(k] = i;
k++;
i = fgetc(fpin);
}
stringl{k] = "\0’;
i = fgetc(fpin);

/* GET SCHEDULE VALUE FROM SIMULATION OUTPUT FILE */
while (i !'= 40)
{
i1 = fgetc(fpin);
}
i = fgetc(fpin);

while (i != 41) /* continue getting characters until ascii */
{ /* #41 ")’ */

stringlm] = i;

m++;

i = fgetc(fpin);
}
stringl[m] = 7\0’;
fclose (fpin) ;

strncpy (dest, string, k) ; /* copy actual effort into dest string */
strncpy (destl, stringl,m); /* copy actual sked into destl string */
md = atof (dest); /* string to float conversion */

time = atof (destl);

if (TOTMD1 >= md) /* checks if estimated effort is > actual */
{
if (TDEV1 >= time) /* checks if estimated sked is > actual */
{
diff = (TOTMD1l-md) /md; /* calc error rates for effort */
diffl = (TDEV1-time)/time; /* calc error rates for sked */

diff = (TOTMDl-md)/md; /* calc error rates for effort */
diffl = (time-TDEV1)/time; /* calc error rates for sked */
else

if (TDEV1 >= time) /* checks if estimated sked is > actual */
{

diff = (md-TOTMD1l) /md; /* calc error rates for effort */
diffl = (TDEVli-time)/time; /* calc error rates for sked */
}
else
{ .
diff = (md-TOTMD1l)/md; /* calc error rates for effort */

diffl = (time-TDEV1l)/time;/* calc error rates for sked */

!

/* open report file */
results = fopen ("REPORT.OUT", "a");

/* output format */

107

fprintf (results, "\n\n\nEstimated Actual Percent Estimated Actual
Percent\n");
fprintf (results, "man-days man-days Error Schedule Schedule B

\n") ;

}

fprintf (results," %6.0f %6.0f %6.0f $6.0f %6.0f $6.0f
\n", TOTMD1,md,diff, TDEV], time,diffl) ;
fprint £ (results, "\n\n**** This data is available in REPQRT.QUT ****\n") .
fprintf (results,"**** Fach time the model is run REPORT.QUT will change
****\n") ;

fclose (results);

/* display for printing report or displaying the report on screen */
gotoxy (15,10);

print £ (" REPORT FORMAT CHOICE\n");
gotoxy (15,12);

print£(" 1 - Display results\n");
gotoxy (15,13) ;

print £(" 2 - Print results\n");
gotoxy (15, 14);

printf (" 3 - Exit\n");

gotoxy (1i5,16);

printf ("Enter one of the above: ");

scanf ("%d", &§num) ;

switch (num) /* case statement exits program or to DOS */
{
case 1:
clrscr();
exit (4) ; /* exit to DOS and display results on screen */
case 2:
clrscr();
exit (3); /* exit to DOS and send results to printer */
case 3:
exit (0); /* exit program */

/* end outputl program */

108

APPENDIX D

/* sk ok Jo ok A de A e ok A e e sk dk ke sk ok ek kR e e A R A e A ok e A e e R ok ok e e A ok o ok ok ke ok de g ok ok ok ok ke e e e A e ke e */

/* * Author: Richard W. Smith Advisor: Prof. Abdel-Hamid * */
/* * Program: Input2 Lang: C * x/
/* * Used Shareware <windows.h> in project environment *x *x/

/* AAARAARAR A kA A AR RAAAAR N hhkhhkhkhkhkhhkdhAdkxikkkAdkhkkkxkkkhhikk ki */

/* This is one of 5 programs written and interfaced with the */

/* Dynamic Simulation Model. This particular program completes */
/* two tasks. First it accepts input variables for the dynamic */
/* simulation model and COCOMO acting as a front end for the */
/* model in the two project environment. Then it makes all */

/* the necessary COCOMO calcuations for either the Basic or */

/* the intermediate versions of COCOMO for each project. */

/* The following headers were used and needed to utilize the */
/* library functions used throughout this program. */

#include <windows.h>

#include <stdio.h>

#include <math.h>

#include <conio.h>

#include <dir.h>

#include <string.h>

/* Prototypes for the functions which will be */
/* described below. */

int filelist (void):

void model in(float *,float *,int *,float *,int,char a[},float *,
- float*,int, float);

void icocomo_in(float *,float *,int,char *);

void file save(float *,float *,float *,char *,float,int *,int, float);

void file pass(float,float,float,float,int *,int *,float *,float *,
- float *,float *);

float interp(float);

float prod(float *,float,float,int *);

void calc(float *,int *,float *,6 float *,float,float,float):;

void initial (float *);

void dsm_in{(float *, float *});

void como_in(int *,char *);

/* Declarations: */
int bat; /* border atrib */
int wat; - /* window atrib */

/*Pointer to files being used*/
FILE * textfile;

FILE * fin, *fin2;

FILE * fout, *fout2;

FILE * fnew, *fnew2;

WINDOWPTR w3; /* window declaration */
WINDOWPTR wid; /* window declaration */
109

/* The following are static structures developed to be */

/* used throughout the program in pop-up menus for various */
/* user selection requirements. The learning curve for */

/* the use of windows.h was considerable, however, once */

/* learned it is fairly simple to create menus. */

static struct pmenu intelc =
{0, FALSE, O, /* Must be FALSE */
1, 3, /* The 1 initiates which row */ .
/* The 3 determines number of lines */
/* The 3 determines number of lines */
/* which can be highlighted after row */ -

/* row,col */
1, 20, "INITIAL MENU", O,
4, 12, "1 - LOAD projects from disk.", 1,
5, 12, "2 - NEW projects.", 2,
6, 12, "3 - EXIT Program.", 3,
9, 3, "Select with number or cursor and press [ENTER]...",O0,
39, 99, "",99
b

static struct pmenu intelc25 =
{0, FALSE, 0,

1, 3,

1, 12, ™ SELECT NEW PROJECT MENU", O,

4, 12, "1 - ENTER New Project 1.", 1,

5, 12, "2 - ENTER New Project 2.", 2,

6, 12, "3 - EDIT/DISPLAY/RUN.", 3,

9, 3, "Select with number or cursor and press [ENTER]}...",0,
9, 99, "",99

static struct pmenu intelc?3 =
{0, FALSE, 0,

1, 4,
1, 20, "NEW PROJECT MENU", 0,
4, 12, "1 - Display/Edit Project 1.", 1,
5, 12, "2 - Display/Edit Project 2.", 2, |
6, 12, "3 - RUN Dynamic Simulation.", 3, i
7, 12, "4 - QUIT menu.", 4,
9, 3, "Select with number or cursor and press [ENTER]...",0,
9, 99, ™" 393
b
static struct pmenu intelcO = .
{0, FALSE, O,
1, 4,
1, 21, "™ MAIN MENU", O,
3, 15, "1 - SELECT Project 1 from disk.", 1,)
4, 15, ™2 - SELECT Project 2 from disk.", 2,
5, 15, "3 - RUN Dynamic Simulation.", 3,
6, 15, "4 - QUIT menu.", 4,
9, 3, "Select with number or cursor and press ([ENTER]...",O0,
39, 99, "",99
}

PR

110

static
{0,
¢ 3.
15,
15,
15,
15,
3,
99,

~ O U NEN

D N T N

static
{9,
’ 3l
6,
’
10,
10,
3,
99,

— O b NN
[e)}

D N Y T Y

struct pmenu intelcl$ =

FALSE, O,

" cocoMO MODEL", O,

" ESC - EXIT ", O,

"] - Basic COCOMO Model", 1,

"2 - Intermediate COCOMO Model", 2,
"Select the model you wish to use and press enter:
"“’99

struct pmenu intelc2l =

FALSE, O,

"Current data file is for the Basic COCOMO", 0,

" (Select one of the following)", O,

"1l - CONTINUE Basic COCOMO Model"™, 1,

"2 - Intermediate COCOMO Model"™, 2,

"Select the model you wish to use and press enter:
nu'99

static struct pmenu intelc22 =

{0,

FALSE, O,

;3
4 161
Y
’ 1.0,
r]'Ol
r 3'
r 99,

static
;4
14 10'
. 10,
’ 18[
, 18,
14 18!
e 3.
99,

static
{0,
2, 6,
1, 2,
2, 2,
4, 15,
5, 15,
6, 15,
7, 13,
8, 15,
11, 3,
99,

static

"SAVING FILES", O,

"1

{Select one of the following)", O,
- SAVE changes under Same Name ", 1,

"2 - SAVE changes under New Name", 2,

"Select the model you wish to use and press

l'“'99

struct pmenu intelc20 =

a
0, FALSE, O,

" COCOMO MODE SELECTION"®
n ESC - EXIT ", 9,
"l - Organic", 1,

"2 - Semi-detached", 2,

"3 - Embedded", 3,

"Select the appropriate mode and press enter:

nn g9

struct pmenu intelcl =

FALSE, O,

r OI

enter:

"'OI

RELY (Required software reliability)", O,

" i ESC - EXIT ",
"l - Very Low; 0.75", 1,

"2 - Low; 0.88", 2,

"3 - Nominal; 1.00", 3,

"4 - High; 1.15",4,

"S5 - Very High; 1.40%, 5,

"Select the appropriate Software Cost Driver Rating:

e 939

struct pmenu intelcd =

0,

111

{0, FALSE, O,

2, 5,

1, 2, " DATA (Database size):", 0O,
2, 2, " ESC - EXIT ", O,

4, 15, "1 - Low; 0.94", 1,

5, 15, "2 - Nominal; 1.00", 2,

6, 15, "3 - High; 1.08", 3,

7, 15, ™4 - Very High; 1.16",4,
10, 3, "Select the appropriate Software Cost Driver
39, 99, "",99

}:

static struct pmenu intelc3 =
{0, FALSE, 0,

, 2, " CPLX (Product complexity)", O,
, . " ESC - EXIT ", O,

, 15, "l-Very Low; 0.70",1,

, 15, "2-Low; 0.85",2,

, 15, "3-Nominal; 1.00", 3,

, 15, "4-High; 1.15",4,

, 15, "5-Very High; 1.30", 5,

, 15, "6-Extra High; 1.65", 6,

WO U NN

11, 1, "Select the appropriate Software Cost Driver Rating:

93, 99, "",99

static struct prenu intelcd =

{0, FALSE, O,

2, 5,

i, 2, " TIME (Exection time constraint)®™, O,
2, 2, " ESC - EXIT ", O,

4, 15, "1 - Nominal; 1.00", 1,

5, 15, "2 - High; 1.11", 2,

6, 15, "3 - Very High; 1.30", 3,

7, 15, "4 - Extra High; 1.66",4,
10, 3, "Select the appropriate Software (Cost Driver
929, 99, "",99

b

static struct pmenu intelc5 =
{0, FALSE, O,

2, 5,

1, 2, " STOR (Main storage constraint)", 0,
2, 2, " ESC - EXIT ", O,

4, 15, "1 - Nominal; 1.00", 1,

5, 15, "2 - High; 1.06", 2,

6, 15, "3 - Very High; 1.21", 3,

7, 15, "4 - Extra High; 1.56",4,

10, 3, "Select the appropriate Software Cost Driver
29, 939, "",99

b

static struct pmenu intelcé6 =
{0, FALSE, O,

2, 5,
1, 2, " VIRT (Virtual machine volatility)"™, 0,
2, 2, " ESC - EXIT ", O,

112

Rating:

Rating:

Rating:

. 15,
. 15,
-y
, 153,
. 3
’

1 ’
9 929,

— PO O oY b

static

"l - Low; 0.87", 1,

"2 - Nominal; 1.00", 2,
"3 - High; 1.15", 3,

"4 - Very High; 1.30", 4,

"Select the appropriate Software Cost Driver Rating:

I|I|' 99

struct pmenu intelc?7 =

{G, FALSE, O,

’

’
’
r 15/
’
’

~SNoauve RN

. 15,

10, 3,

99, 99,
b

static

TURN (Computer turnaround time)", O,
ESC - EXIT ", O,
"l - Low; 0.87", 1,
"2 - Nominal; 1.00", 2,
"3 - High; 1.07", 3,
"4 - Very High; 1.15",4,

"Select the appropriate Software Cost Driver Rating:

nn 99

struct pmenu intelc8 =

{0, FALSE, O,

6,

2,

2,

15,
15,
15,
15,
15,
3,
99,

~

O
— O O JdJOWUa NN

Se v R N N N N N NN

static

ACAP (Analyst capabilit ", O,
" ESC - EXIT ", .,
"l - Very Low; 1.46", 1,
"2 - Low; 1.19", 2,
"3 - Nominal; 1.00", 3,
"4 - High; 0.86",4,
"5 - Very High; 0.71%, 5,

"Select the appropriate Software Cost Driver Rating:

ll“' 99

struct pmenu intelc9 =

{0, FALSE, O,

-~

[Nl oo
—~ O OOV aENDPN

99,

Sewm N N N N N N w N
[u—y
w
-

static

AEXP (Applications experience)", 0O,
n ESC - EXIT ", O,
"l - Very Low; 1.29%, 1,
"2 - Low; 1.13", 2,
"3 - Nominal; 1.00", 3,
"4 - High; 0.91",4,
"5 - Very High; 0.82", 5,

"Select the appropriate Software Cost Driver Rating:

nn 99

struct pmenu intelclO =

{0, FALSE, O,

6,
2,
2,
15,
15,
1s,
15,
1s,
3,
929,

WOWH O -JAOWU.a NN

LY TR YL SEE R U SR Y

O b

PCAP (Programmer capability)", O,
n ESC - EXIT ", O,

"l - Very Low; 1.42", 1,

"2 - Low; 1.17", 2,

"3 - Nominal; 1.00", 3,

"4 - High; 0.86",4,

"S5 - Very High; 0.70", 5,

"Select the appropriite Software Cost Driver Rating:

"n 99

113

b

static struct pmenu intelcll =

{0,

r’

FALSE, O,

5,

2, " VEXP (Virtual machine experience)", 0,
2, " ESC - EXIT ", O,

15, "1 - Very Lewr; 1.217, 1,
15, "2 - Low; 1.10%, 2,
15, "3 - Nominal; 1.00", 3,
15, "4 - High; 0.90",4,

3, "Select the appropriate Software Cost Driver Rating:

99, "",99

static struct pmenu intelcl2 =

(0,

FALSE, O,
5,
2, " LEXP (Programming Language experience)", 0,
2, " ESC - EXIT ", O,
15, "1 - Very Low; 1.14", 1,
15, "2 - Low; 1.07", 2,
15, "3 - Nominal; 1.00", 3,
15, "4 - High; 0.95",4,
3, "Select the appropriate Software Cost Driver Rating:

99, ®",99

static struct pmenu intelcl3 =

{0,

’

’
r
14
14
4
r

D J WP

’
11,
99,

b

FALSE, O,
6,
2, " MODP (Use of modern programming practices) ™,
2, " ESC - EXIT ", O,
15, "1 - Very Low; 1.24", 1,
15, "2 - Low; 1.10", 2,
15, "3 - Nominal; 1.00", 3,
15, "4 - High; 0.91", 4,
15, "5 - Very High; 0.82", 5,

3, "Select the appropriate Software Cost Driver Rating:
99, "",99

static struct pmenu intelcld =

{0,

stat
{0,

FALSE, 0,

6,

2, " TOOL (Use of software tools)", O,
2, " ESC - EXIT ", 0,

15, "1 - Very Low; 1.24", 1,

15, "2 - Low; 1l.10", 2,

15, "3 - Nominal; 1.00%", 3,

15, "4 - High; 0.91%, 4,

15, "5 - Very High; 0.83", 5,

3, "Select the appropriate Software Cost Driver Rating:
99, "",99

ic struct pmenu intelclS =
FALSE, O,
6,
2, " SCED (Required development schedule®, O,
2, " ESC - EXIT ", O,

114

0,

4, 15, "1 - Very Low; 1.23", 1,

5, 15, "2 - Low; 1.08", 2,

6, 15, "3 - Nominal; 1.00", 3,

7, 15, "4 - High; 1.04",4,

8, 15, "5 - Very High; 1.10", 5,

11, 3, "Select the appropriate Software Cost Driver Rating: ",0,
99, 99, "",99

/* Function which lists all the data files (*.prf) */
/* in the current directory. */

int filelist (void)
{
struct f£fblk ffblk;
int done4;
printf ("Data file listing: \n\n");
done4 = findfirst ("*.prf",&ffblk,0); /* finds first .prf file */
while (!doned)
{
print£(" $s\n", £fblk.£f name) ;
done4 = findnext (&ffblk); /* finds the next .prf file */
}
return(l);

)

/* This function accepts numerous pointers to various strings */
/* which allows the user to select variables from the dispiay */
/* and change the value of current simulation input variables. */

void medel in(float *fptr,float *PCNT,int *KDSI,float *results,int mode,char
fnamel[], float *EAF1l, float *cdrate, int donel, float mfl)
{

/* Declarations for this function */

int choicel, choice2, choice3;

float expl,exp2;

char stringl(] = "Organic®;
char string2{] = "Semi-detached";
char string3{] = "Embedded";
char string(14];
switch (mode) /* mode variable is passed in to function */
{ /* above for display on this screen; switch/case format*/
/* above for display on this screen; switch/case format*/
case 1:
strcpy (string,stringl);
break;
case 2:
strepy(string, string2);
break;
case 3: _
strcpy(string, string3);
break;

}

/* clears screen and displays variables on screen in below format */

while (!donel)
{
clrscr();

. n .
print £ (" HAKRARKKAX AR KKK RAAKRKRAKRA R AR ARk kA Ak kAR XA\ n") ;

115

printf (" MODEL INPUTS for %s \n", £fnamelj ;
printf (" %s Mode\n",string);

prlntf(" ***************************************\n\n“)’- \

printf (" 1. INUDST: %5.3f 8. (1) TPFMQA[1l]:
%5.3f\n", fptr(0], fptr(12});

printf (" 2. ADMPPS: %$5.3f (2) TPFMQA([2}:
$5.3f\n", fptr{l], fptr([13]);

printf (" 3. HIREDY: %$5.3f (3) TPFMQA[3]):
%5.3f\n", fptr (2], fptrild]);

printf (" 4. AVEMPT: %£5.3f (4) TPFMQA([4}]:
%5.3f\n", fptr{3]), fptr[15]);

printf (" 5. TRPNHR: %5.3f (5) TPFMQAI[S]:
%5.3f\n", fptr (4], fptr[l6]); .

printf£ (" 6. ASIMDY: %5.3f (6) TPFMQA[6]:
%5.3f\n", fptr (5], fptx[l1l7]);

print£ (" 7. (1) TNERPK[1l]: %5.3f {(7) TPFMQA(7]: -
%5.3f\n", fptr (6], fptr(18]);

printf (" (2) TNERPK([2]: %5.3f (8) TPFMQA(8]:
%5.3f\n", fptr {7}, fptr(19]);

printf (" (3) TNERPK[3]: %5.3f (9) TPFMQA([9]:
$5.3f\n", fptr[8], fptr[20]);

printf (" (4) TNERPK[4]: £5.3f (10) TPFMQA[10]:
%5.3f\n", fptr[9], fptr[21]);

printf (" (5) TNERPKI[5]: $5.3fF 9. DEVPRT:
%5.3£f\n", fptr (101, fptr([22]);

printf (" (6) TNERPK([6]: $5.3f 10. DSIPTK:
%$5.2f\n\n", fptr{1l], fptr[23]):

print£(" 11. Size of project (KDSI): %d\n\n",KDSI{0j);

printf (" 12. EXIT and SAVE changes.\n\n");

/* allows user to select a variable using assigned number and */

/* change current value by displaying just the variable selected */
/* once the new value is entered fuction returns to the display */

/* screen for user to see changes and allow additional changes */

print £ ("

Enter number of parameter you wish to change:

scanf ("%d", &choicel) ;

switch (choicel)
{
case 1:
clrscr():;
gotoxy (10,10);

")

printf("Enter Initial Under Staffing Level Factor:

scanf ("S$£", &fptr(0]);
break;
case 2:
clrscr();
gotoxy (10,10) ;

printf ("Enter Average Daily Manpower per Staff Member: ");

sganf (“%£f", &fptr(1]);
break;

case 3:
clrscr();
gotoxy(10,10);
print £ ("Enter Hiring Delay: ");
scanf ("$f", &fptr(2]);
break;

case 4:

clrscr():;

gotoxy(10,10);

116

")

L

co change:

printf ("Enter Average Employment Time: ");

scanf ("%£", &fptr(3]);
break;

case 5:

clrscr():
gotoxy(10,10);

printf ("Enter Training Overhead: ");

scanf ("$£f",&fptr(4]);
break;

case 6:

/*
/*
/*

/* one value needed to be changed. */
case 7:
printf (" Enter subscript value of TNERPK parameter you wish

")

clrscr();
gotoxy (10,10);

printf ("Enter Average Assimilation Delay: ");

scanf ("$£", &¢fptr(5]);
break;

The TNERPK has several entries for this one variable by using */
a second set of values for each entry the user can change cne */
entry at a time vice entring all the values each time even if */

scanf ("$d", &choice2);
switch (choice2)
{
cage 1:
clrscr();
gotoxy (10,10);
printf ("Enter Error rate(l]:
gscanf ("$£f", &fptr{6]):
break;
case 2:
clrscr():;
gotoxy (10,10);
printf ("Enter Error rate{2]:
scanf ("$f", &fptr([7]);
break;
case 3:
clrscr();
gotoxy (10,10) ;
printf ("Enter Error rate[3]:
scanf ("%f", &fptr(8]);
break;
case 4:
clrscr():
gotoxy (10,10) ;
printf ("Enter Error rate(4]:
gcanf ("$£", &fptr[9]);
break;
case 5:
clrscr();
gotoxy(10,10);
printf ("Enter Error rate(5]):
scanf ("$f",&fptr[10]);
kreak;
case 6:
clrscr();
gotoxy (10, 10) ;
printf ("Enter Error rate{6]:

117

")

“)-

")

")z

")

/* TPFMQA set-up same way as TNERPK for same reasons */
case 8:

wish to change:

}

scanf ("$f", &fptr(11]);
break;

default:
break;

break;

printf (" Enter subscript value of TPFMQA parameter you

scanf ("%d", &choice3) ;
switch (choice3)

{

case 1:

clrscr();

gotoxy (10,10);
printf ("Enter Planned Fraction
scanf ("$£f", sfptr(12]);
break;

case 2:
clrscr ()

gotoxy (10,10);
printf("Enter Planned Fraction
scanf ("$£", &fptr(13]);
break;

case 3:
clrscr();

gotoxy (10,10);
print £ ("Enter Planned Fraction
scanf ("%f", &fptr(14});
break;

case 4:
clrscr();

gotoxy (10,10) ;
printf ("Enter Planned Fraction
scanf ("%f", &fptr[15});
break;

case 5:

clrscr();
gotoxy (10,10) ;
printf ("Enter Planned Fraction
scanf ("$£", &fptr(16]});
break;

case 6:

clrscr();
gotoxy (10,10);
printf ("Enter Planned Fraction
scanf ("$£", &fptr{17]);
break;
case 7:
clrscr();
gotoxy (10,10) ;
printf ("Enter Planned Fraction
scanf ("$£f", &fptr{18]);
break;
case 8:
clrscr ()
gotoxy(10,10);
printf ("Enter Planned Fraction
scanf ("$£f",&fptr[19));

118

of

of

of

of

of

of

of

of

Manpower

Manpower

Manpower

Manpower

Manpower

Manpower

Manpower

Manpower

for

for

for

for

for

for

for

for

QA(l]):

QA[2]:

QA[3]:

QA[4]:

QA[S]:

QA[6]:

QA7) :

QA[8]:

")

")

")

")

")

break;

case 9:
clrscr{);

gotoxy (10,10);

printf ("Enter Planned Fraction of Manpower for QA[9]:

gcanf ("$£f", &fptr(20]);
break;
case 10:
clrscr();
gotoxy (10,10) ;

printf ("Enter Planned Fraction of Manpower for QA[10]:

scanf ("S$£f", &fptr(21});
break;

default:
break;

}
break;
case 9:
clrscr();
gotoxy (10,10);
printf ("Enter DEVPRT: ");
scanf ("S$£", &fptr{22]);
break;
case 10:
clrscr();
gotoxy (10,10);
printf ("Enter Nominal Potential Productivity MD percent
An\n");
printf (" Percent MD for tests: ");
scanf ("$£",&PCNT(0]);

")

")

print£("\n Please be consistent with TPFMQA input values)\n");

printf (" Percent MD for QA: "y
scanf ("$£", &PCNT([1]);
printf (" Percent MD for Rework: ");

gscanf ("%£", &PCNT([2]);

break;
case 11:
clrscr();
gotoxy (10,10) ;
printf ("Enter new Size of project (KDSI): "),
scanf ("%d", &KDSI[0)) ;
break;
default:
donel = 1;
} /* switch choice 1 */
switch (mode)
{
case 1:
expl = 1.05;
exp2 = 0.38;
calc(results,KDSI,EAFl, cdrate,mfl, expl,exp2);
break;
case 2:
expl = 1.12;
exp2 = 0.35;
calc (results,KDSI,EAFl, cdrate,mfl, expl,expl)
break;
case 3:
expl = 1.20;

119

}

exp2 = 0.

32;

calc(results,KDSI, EAFl,cdrate,mfl, expl, exp2);

break;

/* Nominal productivity is one of 3 variables passed into */
/* the simulation model that need algorithmic calculations. */
/* This function will be discussed in detail below */
fptr{23] = prod(PCNT, results(0], results[2],KDSI);

} /* while donel */

}

/* This function gives the user the opportunity to view current */

/* values assigned to

/* if necessary.

void icocomo_in(float

{

/* rate is an array

the COCOMO 15 cost drivers and make changes */

All cost drivers are defaulted to 1.00. */

int choice,i;
int CD1,CD2,CD3,CD4,CD5,CD6,CD7,CD8,CDY9,CD10,CD11,CD12,CD13,CD14,CD15;

*rate, float *EAF1l, int done3,char *fnamel)

which hold the values for determining EAF for COCOMO */

/* clears screen and displays the 15 cost drivers and values */

while (!done3)
{
clrscr();
printf ("
printf ("
print £ ("
printf£ ("
printf ("
printf ("
printf ("
printf ("
printf ("
print £ ("
printf ("
print £ ("
printf ("
printf ("
print £ ("
print £ ("
printf ("
printf ("
print€ ("
printf ("

**************k*******************************\nll) H

INTERMEDIATE LEVEL COCOMO MODEL INPUTS \n");

for %s

\n", fnamel) ;

****k******k**‘k*******k*****k*****************\n\n“) H

RELY:
DATA:
CPLX:
TIME:
STOR:
VIRT:
TURN:
ACAP:
AEXP:
PCAP:
VEXP:
LEXP:
MODP:
TOOL:
SCED:
16.

complete.\n\n");

%1.
%1.
$1.
1.

%1
$1
%1
%1
%1
%1

2f\n", rate(0])
2f\n", rate[1]);
2f\n", rate[2]);
2f\n", rate(3]);

.2f\n", rate(4]) ;
.2f\n", rate[5]);
.2f\n", rate{6]);
.2f\n", rate[7]);
.2f\n", rate[8]);
.2f\n",rate{9]);
%1.
$1.
$1.
1.
%1,
Press [1l6 or 0] when entries are

2f\n",rate(10]);
2f\n",rate{11]);
2f\n", rate(12]);
2f\n", rate[13]);
2f\n\n", rate{14));

/* allows user to select one of the above cost drivers by number */
/* using the case statments the program calls specific pop-up */

/* menus for the user to select specific values from and return */
/* to display screen to see changes.

printf ("

{
case 1:

*/

Select Cost Driver and press ([Enter]: ");
scanf ("%d", &choice) ;
switch (choice)

€Dl = wn_popup(0, 5, 15,
switch (CD1)

{

case 0:
break;

50, 193,

120

wat,

bat, &intelcl, TRUE);

case 1:
rate(0] = 0.75;
break;

case 2:
rate[0] = 0.88;
break;

case 3:
rate(0] = 1.00;
break;

case 4:
rate(0] = 1.15;
break;

case S:
rate[0] = 1.40;
break;

}

break;

case 2:

CD2 = wn_popup(0, 5, 15, 50, 10, wat, bat, &intelc2, TRUE);

switch (CD2)

{

case 0:
break;

case 1:
rate[1l]
break;

case 2:
rate[1l]
break;

case 3:
rate (1]
break;

case 4:
rate(1)
break:

[
o

.94;

]
-

.00;

[l
=

.08,

[
P

.16;

}
break;
case 3:
CD3 = wn_popup (0, 5, 15, 50, 10, wat, bat, &intelc3, TRUE):
switch (CD3)
{
case 0:
break;

case 1:
rate[2) = 0.70;
break;

case 2:
rate([2] = 0.85;
break;

case 3:
rate{2)] = 1.00;
break;

case 4:
rate[2] = 1.15;
break;

case 5:
rate(2} = 1.30;
break;

case 6:

121

rate[2] = 1.65;
break;
}
break;
case 4:
Cb4 = wn_popup(0, S5, 15, 50,
switch (CD4)
{
case 0:
break;

case 1:
rate([3]
break;

case 2:
rate(2]
break;

case 3:
rate (3]
break;

case 4:
rate 3]
break;

]
[

.00;

]
fu

.11,

0
e

.30;

[l
fony

.66;

}
break;
case 5:
CDS = wn_popup(0, 5, 18, 50,
switch (CDS5)
{
case 0:
break;

cage 1:
rate[4]
break;

case 2:
rate[4]
break;

case 3:
rate (4]
break;

case 4:
rate (4]
break;

[
—
o
[

W
—
o
(=3}

]
-
.
N
-

[
=
wn
o2}

}
break;
case 6:
CD6 = wn_popup(0, 5, 15, 50,
switch (CD6)
{
case 0:
break;

case 1:
rate(5] = 0.87;
break;

case 2:
rate(5]
break;

case 3:
rate(5]

[l
—

.00;

[}
—

.15

122

10, wat, bat, &intelc4, TRUE);

10, wat, bat, &intelc5, TRUE);

10, wat, bat, &intelc6, TRUE);

break;
case 4:

rate (5] =

break;

1.30;

}
break;
case 7:
CD7 =
switch
{
case 0:
break;

wn popup (0, 5,

(CD7)

case 1:
rate([6] = 0.
break;

case 2:
rate[6] =1
break;

case 3:
rate[6] = 1
break;

case 4:
rate(6; = ..
brea',

87;

.00;

.07;

15;

}
break:
case 8:
CD% = wn_popup (0,
~witch (CD8)
{
case 0:
break;

3,

case 1:
rate[7] = 1.
break;
case 2:
rate[7] = 1.
break;
case 3:
rate[7] =1
break;
case 4:
rate[7] = 0.
break;
case 5:
rate(7] = 0
break;

46;

19;

.00;

86;

.71;

}
) break;
case 9:
CD9 = wn_popup (0, 5,
switch (CD9)
{
case 0:
break;

case 1:
rate({8] =
break;

1.29;

15,

15,

15,

123

50,

50,

50,

10,

10,

10,

wat,

wat,

wat,

bat,

bat,

bat,

&intelc7, TRUE):;

&intelc8, TRUE):;

&intelc8, TRUE):;

case 2:
rate (8]
break;

case 3:
rate 8]
break;

case 4:
rate[8]
break;

case 5:
rate[8]
break;

[}
—

.13;

U
[

.00;

[}
o

.91;

i
o

.82;

}
break;
case 10:
CD10 = wn_popup(0, 5, 15, 50, 10, wat, bat, &intelclO, TRUE);
switch (CD10)
{
cagse 0:
break;

case 1:
rate (9]
break;

case 2:
rate[5]
break;

case 3:
rate[9]
break;

case 4:
rate[9] = 0.86;
break;

case 5:
rate([9] = 0.70;
break;

.42;

]
—

i
=

.17;

[
[

.00;

}
break;
case 11:
CD11 = wn_popup(0, 5, 15, 50, 10, wat, bat, &intelcll, TRUE);
switch (CD1l1l)
{
case 0:
break;

case 1:
rate[10]
break;

case 2:
rate(10} = 1.10;
break;

case 3:
rate{10] = 1.00;
break;

case 4:
rate[10] = 0.930;
break;

[
[

.21;

break;
case 12:

124

Cp12 = wn_popup(0, 5, 15, 50, 10, wat, bat, &intelcl2, TRUE});
switch (CD12)
{
case 0:
break;

case 1:
rate[1l1l]
break;

case 2:
rate(1l1]
break;

case 3:
rate(1l1l]
break;

case 4:
rate([1l1l)
break;

1l
=

.14;

[
[

.07;

I
'

.00;

[
o

.95;

}
break;
case 13:
CDb1l3 = wn_popup(0, 5, 15, 50, 10, wat, bat, &intelcl3, TRUE);
switch (CD13)
{

case 0:
break;

case 1:
rate(12]
break;

case 2:
rate(12]
break;

case 3:
rate[12]
break;

case 4:
rate[12]
break;

case 5:
rate[1l2]
break;

1]
[

.24;

il
[,

.10,

[
—

.00;

[}
o

.91;

]
o

.82;

}
break;
case 14:
CD14 = wn _popup(0, 5, 15, 50, 10, wat, bat, &intelcld4, TRUE);
switch (CD14)
{
case 0:
break;

case 1:
rate(13] = 1.24;
break;

case 2:
rate(13] = 1.10:
break;

case 3:
rate{13] = 1.00;
break;

125

case 4:

rate(13]) = 0.91;
break;
case 5:
rate(13]) = 0.83;
break;
}
break;

/* for the schedule cost driver need both the EAF value */
/* but also the actual percent of schedule compression */
/* or expansion for later COCOMO calculatidns. */

case 15:

CD15 = wn_popup(0, 5, 15, 50, 10, wat, bat, &intelcl5, TRUE);

switch (CD15)

{

case 0:
break;

case 1:
rate[14]) = 1.23;
EAF1([0] = 0.75;
break;

case 2:
rate[l14) = 1.08;
EAF1(0] = 0.85;
break;

case 3:
rate(14}) = 1.00;
break:;

case 4:
rate(14] = 1.04;
EAF1(0] = 1.30;
break;

case 5:
rate[14) = 1.10;
EAF1(0] = 1.60;
break;

}

break;

default:
done3 = 1;
break;

} /* while done3 */
}

/* This function sgaves all of the current data for each project */
/* under a sgspecific name specified by the user */

void file save(float *DSMI, float *cdrate, float *PCNT,char *fnamel, float EAF, int
*KDSI, int mode, float mfl)
(l

1f ((fout = fopen(fnamel, "wb"))==NULL)
{

fprintf (stderr, "Unable to open file %3 \n", fnamel);
}

126

else
{

printf("\n\n\nSaving $s\n\n\n\n", fnamel) ;
printf ("\n\n\nSavingcc0... $s\n", fnamel) ;
fwrite ((void *) DSMI,26 * sizeof(float),1l, fout);
fwrite ((void *) KDSI,sizeof(int),1,fout);
fwrite ((void *) &EAF, sizeof (float),1, fout);
fwrite ((void *) cdrate,1l5 * sizeof(float),1l, fout);
fwrite((void *) PCNT,3 * sizeof(float), 1, fout);
fwrite ((void *) &mode, sizeof (int), 1, fout);
fwrite ((void *) &mfl,sizeof(float),1, fout);
fclose (fout) ;
}

}

/* This function provides the avenu: to interface the output */

/* variables from this program into the simulation model via a */
/* text file and pass certain other variables to the OUTPUT2 */

/* program via a binary file for reporting estimates and actual */
/* results and error rates. */

void file pass(float TOTMD1, float TOTMDZ, float TDEV1, float TDEV2, int *KDSI, int
*KDSI2, float *DSMI, float *DSMI2, float *PCNT, float *PCNT2)
{

FILE *fpout;

int loop lim;

float factor(7)}, factor2([4], TVALS[2], TVALS2(2];

long 11,12;

/* need to change to long, once multiplied by 1000 */
/* size could be out of integer range. */
11 = KDSI[0])*1000.0;

12 = KDSI2(0]*1000.0;

/* factor and factor2 arrays contain inputs the user */
/* enters to control adjustment factors in data and */
/* the man-day perce. .age totals for testing, QA, and */
/* rework to be passed to the iterative loop program */
/* for use in updating the nominal productivity */

factor[0}] = (PCNT[Q])+PCNT[1]+PCNT[2]);
factor2{0] = (PCNTZ2[0]+PCNT2[1]+PCNT2(2]);
KDST{1l] = 0;
KDSI2[1l]}= O;
/* easier to pass as arrays */
TVALS (0]} = TOTMDl;
TVALS[1] = T!ZV1;
TVALS2({0] = TOTMD2Z2;
TVALS2([1] = TDEV2;

clrscr();

gotoxy (10, 3) ;

printf ("The following entries are START DATE and WORK FORCE CEILING
entries\n");

gotoxy (10,4);

printf ("for the purpose of several experiments that are outside the scope

of\n");
gotoxy(10,95);
printf{("this thesis.\n");

jgotoxy (10, 8);

127

printf ("Enter the START DATE for project 1:
scanf ("$£", &factor(5));

gotoxy (10,10) ;

printf ("Enter the START DATE for project 2:
gscanf ("$f", &factor2([3]);

gotoxy (10,12);

printf ("Enter the WORK FORCE CEILING that applies to both projects:
scanf ("%f", &factor([6]);

")

")

")

/* Writes to textfile EXAMPLE.DNX */

fprintf (textfile, "C
fprintf (textfile, "C
fprintf (textfile,"C
fprintf (textfile, "C
fprintf (textfile, "C
fprintf (textfile, "C
fprintf (textfile, "C
fprintf (textfile, "C
fprintf (textfile,"C
fprintf (textfile, "C
fprintf (textfile, "C
fprintf (textfile, "C
fprintf (textfile, "C
fprintf (textfile, "C
fprintf (textfile, "C
fprintf (textfile, "C
fprintf (textfile, "C

RJBDSI (1) =%1d\n",
RJIBDSI (2) =%1d\n",

TOTMD1 (1) =%5.0£\n",
TOTMD1 (2)=%5.0£\n",
TDEV1 (1) =%5.0£\n",

TDEV1 (2) =%5.0£\n",

2f\n",
.2f\n",
.2f\n",
.2f\n",
.2f\n",
.2f\n",
.2f\n",
.2f\n",
.2£\n",
.2f\n",
.2f\n",

INUDST (1) =%5.
INUDST (2) =%5
ADMPPS (1)=%5
ADMPPS (2)=%5
HIREDY (1) =%5
HIREDY (2) =%5
AVEMPT (1) =%5
AVEMPT (2) =%5
TRPNHR (1) =%5
TRPNHR (2) =%5
ASIMDY (1)=%5

11);

12) ;
TVALS[0])
TVALS2[0])

TVALS{1]);

TVALS2[11])
DSMI[0]);
DSMI2[0])

DSMI[1]);

1)
)i
1)
)
D]
|

.
’

Y
’
’

DSMI2[1
DSMI [2]
DSMI2[2
]
3

DSMI [3
DSMI2 [
DSMI [4]

DSMIZ2(4])
DSMI [5});

.
’

fprintf (textfile, "C ASIMDY (2)=%5.2f\n", DSMI2[5]);
fprintf (textfile, "T TNERP1=%5.2f $5.2€Ff $5.2f $5.2¢Ff $5.2f %$5.2f\n",
DSMI[6]),DSMI[7),DSMI[8],DSMI[9],DSMI[10],DSMI[11]);
fprintf (textfile,"T TNERPZ2=%5.2f $5.2fF %5.2f %5.2f %5.2f %5.2£\n",

DSMI2(6],DSMI2([7],DSMI2(8],DSMI2{%9},DSMI2([10},DSMI2({11}));
fprintf (textfile,"T TPFMQl=%5.3f %5.3f $%5.3f %5.3f %5.3f %5.3f %5.3f %5.3f
%$5.3f %5.3f O\n", DSMI[12],DSMI(13],DSMI[14],DSMI{15],
DSMI[16],DSMI[17]),DSMI[18],DSMI[19],DSMI[20],DSMI[21]);
fprintf (textfile, "T TPFMQ2=%5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f
%5.3f %5.3f O\n", DSMI2(12)],DSMI2({13],DSMI2[14],DSMI2[15],
DSMI2(16],DSMI2{17],DSMI2[18],DSMI2[19],DSMI2[20],DSHMI2[21]);
fprintf (textfile, "C DEVPRT (1)=%5.2£f\n", DSMI[22]);
fprintf (textfile, "C DEVPRT (2)=%5.2f\n", DSMI2(22]);
fprintf (textfile, "C DSIPTK(1)=%5.2f\n", DSMI[23]);
fprint £ (textfile, "C DSIPTK(2)=%5.2f\n", DSMI2[23]);
fprin<f (textfile, "C STRIDT(1l)=%5.2f\n", factor(5]):
fprintf (textfile, "C STRTIDT (2)=%5.2f£\n", factor2[3]);
fprintf (textfile, "C NCLTWF=%5.2f\n", factor(6]);
fclose (textfile);

/%
J*
J*
/*
/*
/*
/*

The following user entries are requested here because */

it is just prior to running the simulation model. */

They deal directly with the iterative loop process */

The requests dictate how accurate the user wishes to */

make the results, how many iterations of the loop should */
be run and an avenue for the user to build fat (safety factor)
into the project or prevent the model from doing so. */

*/

/*
/*
/*
/*
/*

If the need for manual operation of the iterative loop */
process is necessary I would ask the user one additional */
question in this series. If the the user wished a manual or */
automatic loop process. Then label it as a flag and pass it */
in the binary file to the the testio2 program. In that */

128

/* program is where I would create the manual system., */

clrscr();
gotoxy (10,3);
printf ("The following entries are percentages used to prevent the model\n");
gotoxy (10,4);
printf("from building too much fat into the effort variable in the
project.\n");
gotoxy (10, 5);
printf("In essence these factors simulate the managers responsibility not
to\n");
gotoxy (10, 6) ;
printf("let the productivity lag.\n");
gotoxy (10, 8);
printf ("Enter the Effort adjustment factor in project 1 as a percent: ");
scanf ("$f", &factor(1l]);
gotoxy (10,10) ;
printf ("Enter the Effort adjustment factor in project 2 as a percent: "y
scanf ("%£f", &factor2(1l]);
gotoxy (10,12);
printf ("Enter the Schedule adjustment factor in project 1 as a percent: ")
scanf ("%f", &factor[2}]);
gotoxy (10,14) ;
printf ("Enter the Schedule adjustment factor in project 2 as a percent:
"):
scanf ("$£f", &factor2(2]);
gotoxy (10,18);
printf ("The following entries allow you to choose the accuracy level ad\n");
gotoxy(10,19);
printf("limit the number of loops the model will run before ccmpletion.\n");
gotoxy(10,21);
printf ("Enter the accuracy level for Effort as a percent: ");
scanf ("$£f", &factor{3});
gotoxy (10, 23);
printf ("Enter the accuracy level for Schedule as a percent: ");
gscanf ("$£f", &factor{4l);
gotoxy (10, 25) ;
printf("Enter the limit of the maximum number of loops the model will do:
"

scanf ("%d", &loop_lim);
/* Binary output file for use by output2 */
if ((fpout = fopen("outfileZ.dnx","wb"))==NULL)

fprint f (stderr, "Unable to open file %s \n","outfileZ.dnx");
}
else
{
fwrite ((void *) DSMI,26 * sizeof(float),l, fpout);
fwrite ((void *) DSM12,26 * sizeof (float),1,fpout);
fwrite ((void *) KDSI,2 * sizeof(int),1, fpout);
fwrite ((void *) KDSI2,2 * sizeof(int),1, fpout);
fwrite ((void *) TVALS,2 * sizeof (float),1,fpout);
fwrite((void *) TVALS2,2 * sizeof(float), 1, fpout);
fwrite ((void *) factor,7 * sizeof (float), 1, fpout);
fwrite ((void *) factor2,4 * sizeof(float),l,fpout);
fwrite ((void *) &loop_lim,sizeof(int),1, fpout);
fclose (fpout);
}

129

}
/* Part of the calculation for Nominal Productivity requires */
/* interpolation. This function accepts staff size variable */
/* and returns communication overhead factor for use in determining */
/* Nominal Productivity. */
float interp(float stf size)
(float covhd;
if ((stf_size >= 0) && (stf _size <= 5))
{ covhd = (((stf_size-0)* .015)/5);
if ((stf_size > 5) && (stf _size <= 10))
covhd = (((stf_size-5)* .045)/5) +.015;
if ((stf_size > 10) && (stf_size <= 195))
covhd = (((stf_size-10)* .075)/5) + .06;
if ((stf_size > 15) && (stf_size <= 20))
covhd = (((stf_size-15)* .105)/5) + .135;
if ((stf_size > 20) && (stf_size <= 25))
covhd = (((stf_size-20)* .135)/5) + .24;
if ((stf_size > 25) && (stf _size <= 30))
covhd = (((stf_size-25)* .165)/5) + .375;
if (stf_size >= 30)
covhd = .54;
leturn covhd;

}

/* This function does the Nominal Productivity calculations */
/* TOTMD1 - Effort passed from main function in man-days */

/* TDEV2 - Schedule in months not days! */

/* PCNT - array from main function which passes %Testing, $QA */
/* and %Rework for man-days */

/* MM - Effort in man-months */

/* stf size - Average Staff Size = MM/TDEV2 */
/* DEVMD - Development man-days */

/* ADP - Actual Development Productivity */
/* covhd -~ Communication Overhead */

/* product - Nominal Productivity */

float prod(float *PCNT, flocat TOTMD1, float TDEVZ2,int *KDSI)
{

float MM, stf size,DEVMD,ADP,covhd;

float product;

MM = TOTMD1/19;
stf size = MM/TDEV2;

130

’

DEVMD = (1-(PCNT[O]+PCNT[1]+PCNT([2]))*TOTMD1;

ADP = (KDSI[0]} * 1000.0)/DEVMD;

covhd = interp(stf_size); /* call interpolation function */
product = ADP/(0.6 * (1.0-covhd));

return product;

}

/* This function completes COCOMO calculations for input into */

/* simulation model */

/* result array is used to hold man-day and schedule results */

/* EAF1l contains the percent to multiply TDEV by from cost driver 15 */
/* mfl, expl and exp2 are the coefficients and exponents passed */

/* in from main function */

void calc(float *result,int *KDSI,float *EAFl,flcat *cdrate,float mfl,flocat
expl, float exp2)
{
int i;
float EAF; /* Estimated Adjustment Factor */
EAF = 1.00;
for (1=0;i<15;i++)
{
EAF *= cdrate(i]; /* Calculate the EAF by multiplying each */
/* cost driver by one another */
}
/* Total man-days calculation */
result [0] = mfl * (pow(KDSI[0],expl)) * 19.0 * EAF;

/* if cost driver 15 (schedule) is nominal then calculations */
/* are straight forward. If not you must divide the man-days */
/* by cdrate{14] or calculate total man-days as if schedule */
/* was nominal. */

if (EAF1(0] != 1.00)

result{l] = 2.5 * pow(((result(01/19.0)/cdrate(l14]),exp2) * EAF1[0] *
+9-97 result (2] = 2.5 * pow({{result([0]/cdrate([14])/19.0),exp2) * EAF1[0];
;lse
(result[1l] = 2.5 * pow((result[0]/19.0),exp2) * 19.0;
~esult [2] = 2.5 * pow({(result[0]/192.0),exp2);

}
result [3] = EAF;
return;

}

/* Small function that simply initializes all the */
/* cost drivers to 1 */

void initial (float *cdrate)
{
int 1i;
for (i=0;1i < 15; i++)
{
cdrate(i] = 1.00;
}

return;

131

/* Fuction to accept initial project variable entries for simulation model */
void dsm_in(float *DSMI, float *PCNT)

{

)

int i;

/* Front end; allows user to make necessary inputs for the */
/* Dynamic Simulation Model; Inputs appear one at a time and */
/* there must be an entry for each variable; all inputs will */
/* be stored in an array DSMI */

clrscr():;

printf (" *k**************************x********'k*\n“) H
printf (" * DYNAMIC SIMULATION MODEL INPUTS *\n") ;
prlntf (l' ********************************'k******\n\n") H
print £ (" Input the following: \n\n"%);

printf (" 1. Initial Under Staffing Level Factor: ");
scanf ("%£",&DSMI[0]);

printf (" 2. Average Daily Manpower per Staff Member: ")
scanf ("%£", &DSMI(1]);

printf (" 3. Hiring Delay: ");

scanf ("$£f",&DSMI([2]);

printf (" 4. Average Employment Time: ");

scanf ("%£f",&DSMI(3]):;

printf (" 5. Training Overhead: ");

scanf ("%£",&DSMI[4});

printf (" 6. Average Assimilation Delay: ");

scanf ("$£",&DSMI[5});

print £ (" 7. Error Rate (Must enter 6 input values): \n");

for(i=0; i < 6; i++)
{

print£ (" Error rate([%d]: ", (i+1)):

scanf ("%£f", &DSMI[i+6]);
}
printf (" 8. Planned Fraction of Manpower for QA \n");
printf (" (Must enter 10 input values): \n");

for(i=0; i < 10; i++)
{

printf (" Manpower for QA[%d]: ", (i+l));
scanf ("$f",&DSMI[i+12]);
}
printf (" 9. DEVPRT: ");
scanf ("$£f", &DSMI[22])
printf (" 10. Nominal Potential Productivity Man Day percent

inputs: \n\n");
/* Following entries are necessary for above productivity calculation */

print £ (" Percent MD for tests: ");
scanf ("$f", &PCNT[0]) ;
printf ("\n ({Please be consistent with TPFMQA inputvalues)\n");
print £ (" Percent MD for QA: "y
scanf ("$£", &PCNT[1]):
print£ (" Percent MD for Rework: ");

scanf ("$£", &PCNT[2]) ;

/* Fuction to accept initial project variable entries for COCOMO */
void como_in{int *KDSI,char *fnamel)

{

char stringl([25];

/* Allows user to make necessary inputs for the */
/* COCOMO Model; Inputs appear one at a time and */

/* there must be an entry for each variable */

132

clrscr();

prlntf(“ ***************************************\n");

printf (" * COCOMO MODEL INPUTS *\n") ;
printf(" KAAKKRKKRAKX KX KRR R KK AKX XK kAR KA XXXk kkx*\n\n\n") ;

printf (" Input the following: \n\n");

printf (" 1. Estimated Project Size in KDSI: ");

scan{ ("%d", &KDSI[0]); /* string gets KDSI value */

print£(" 2. Enter the Project Name: ");

scanf ("$s", &stringl) ; /* string gets project name */

strncpy (fnamel, stringl, 8); /* since dos only recognizes the first */
/* 8 characters fnamel takes first 8 */
/* characters in stringl */
stringl(8) = "\0’; /* resets stringl to null set so next */
/* project name if short will not contain */
/* characters previously resident in stringl */
strcat (fnamel,".prf"); /* automatically tags all project names */
/* with .prf to easily recognize projects */

void main ()

{

/* Declarations */

int i, done=0,donel=0, done3=0, done5=0, doneé6=0, done7=0;
int sel, sell, sel2, sel3, seld4, sel5, selb;

int mode, modeZ2;

int projectl = 0, project2 = 0;

int KDSI({2], KDSI2({2]};

float EAF1({1l]), EAF2([1];

float cdrate(15), DSMI[26], PCNT[3],results[4];
float cdrateZ2{15], DSMI2[26], PCNT2[3], results2[4];
float mfl, mf2, expl, exp2;

char fnamel[13];
char fname2{13];
char newname([13]:
char string([25];
char stringl([25];

int ch, basic;

/* creates textfile which is interface with simulation model */
textfile = fopen("simtwo.DNX","w");

/* initializes scedule cost driver to 1 for both projects */
EAF1[0) = 1.00;
EAF2{0] = 1.00;

/* bat is the boarder attribute for the pop-up window */
/* sets background to blue and boarder to white */
bat = v_setatr (BLUE,WHITE,C,0);

/* wat is the window attribute for the pop-up window */
,/* sets background to blue and text to white */

133

- .

wat = v_setatr (BLUE,WHITE,O0,0);

/* this while statement gets program started always initiated on */
while ('doneé)
{
clrscr(); /* pop-up initial menu */
/* allows user to go to main menu */
/* create a new project or EXIT */
sel = wn_popup(0, 5, 10, 55, 10, wat, bat, &intelc, TRUE);

switch (sel)

{

/* SELECT PROJECT FILES FROM DISK AND EXECUTE SIMULATION MODEL */

case 1: /* go to Main Menu */
doneS=(;
while (!doneS5)
{
clrscr () /* Main Menu will allow user to */
/* list, select, run simulation */
/* or exit this menu */

sel2 = wn_popup(0, 5, 10, 55, 12, wat, bat, &intelcO, TRUE);

switch (sel2)
{
/* PROJECT 1 RETRIVAL FROM DISK */
case 1:
filelist (); /* calls function to list all *.prf files */
/* user can look at list and enter file name */
printf(™"\n\n:> Enter project filename: ");
gcanf ("$s", &fnamel) ;
/* if name of file is mis-entered program goes back to */
/* main menu */
if ((fin = fopen(fnamel, "rb"))==NULL)
{
fprintf (stderr, "Unable to open file %s to read\n", fnamel);
continue;
}
/* read in the data of the selected filename */
fread((void *) DSMI, 26 * sizeof(float),1l,fin);
fread({(void *) KDSI,sizeof(int),1l,fin);
fread((void *) &results[3],sizeocf(float),1l,fin);
fread((void *) cdrate, 15 * sizeof(float),1l,fin);
fread((void *) PCNT,3 * sizeof(float),l,fin);
fread ((void *) &mode,sizeof(int),1l,£fin);
fread ((void *) &mfl, sizeof (float),1,fin);
fclose(fin);
/* re-intialize */
donel = 0;
projectl = 1;

/* function described above which allows user to display */
/* on screen the variables for the simulation model less */
/* the COCOMO variables */
model in (DSMI,PCNT,KDSI, results,mode,

fnamel, EAF1l, cdrate,donel,mfl) ;

if (results[3]==1.00)
{
clrscr(); /* gives user option to continue */
/* using basic model or use intermediate */

134

sel3 = wn_popup(0, 5, 10, 50, 10, wat, bat, &intelc2l, TRUE);
switch(sel3)
{
case 1: /* user selected basic model */
basic = 1;
initial (cdrate); /* Basic model EAF values must */
break; /* all be 1.00. This sets all */
/* cost drivers to 1.00 */
case 2: /* user selected intermediate model */
basic = 0;
initial (cdrate);
/* Displays cost driver screen; allows user to */
/* set cost drivers to desired level */
icocomo_in(cdrate,EAF1l,done3, fnamel) ;
break;
} /* switch sel3 */
Y /* if */
else /* if EAF is other than 1.00 */
{
/* displays cost drivers values and */
/* allows user to manipulate */
basic = 0;
icocomo_in(cdrate,EAF1l, done3, fnamel);
}

clrscr():;
/* pop-up menu for user to select COCOMO mode */

mode = wn_popup(0, 5, 10, 50, 10, wat, bat, &intelc20, TRUE);

switch (mode)

{

case 1: /* Organic mode */
if (basic !'= 1)
{ mfl = 3.2; /* sets coefficient and exponents */
;lse
{ mfl = 2.4;
;xpl = 1,05; /* for man-days calculation */

exp2 = 0.38;

/* function that actually does the COCOMO calculations */

calc(results,KDSI,EAF1l, cdrate,mfl, expl, exp2);
break;
case 2: /* Semi-detached mode */
mfl = 3.0;
expl = 1.12;
exp2 = 0.35;
calc(results,KDSI, EAFl,cdrate,mfl, expl, exp2);

break;
case 3: /* Embedded mode */
if (basic !'= 1)
{
mfl = 3.6; /* sets coefficient and exponents */
}
else

135

calc (results,KDSI,EAFl,cdrate,mfl,expl, exp2);
break;
}) /* switch mode */
/* allows user to save current datafile under the same name */
/* or save the same or manipulated data under a new name */
sel4 = wn popup(0, 5, 10, 55, 10, wat, bat, &intelc22, TRUE);

switch (seld)
{
case 1l: /* save in same file */
file save (DSMI, cdrate,PCNT, fnamel,
results[3], KDSI,mode, mfl) ;

break;

case 2: /* if you are changing the name of the file */
clrscr():
gotoxy (12,10); /* enter new name */

printf ("Enter the new project filename: ");
scanf ("$s", &string);

/* Program lets user enter more than 8 characters */
/* for filename. This copies first 8 characters */
/* into nem filename variable */
strncpy (fname2, string, 8);
string[8] = "\0’; /* resets string to null */
strcat (fname2, ".prf"); /* automatically adds ".prf" */

/* writes new file to disk */
fnew = fopen (fnamel2, "wb") ;
fwrite ((void *) DSMI, 26 * sizeof (fleocat), 1, fnew):
fwrite ((void *) KDSI,sizeof (int),1, fnew);
fwrite ((void *) &results{3],sizeof(float),l, fnew);
fwrite ((void *) cdrate,15 * sizeof(float),l, fnew);
fwrite ((void *) PCNT,3 * sizeof(float),1l, fnew);
fwrite ((void *) &mode, sizeof (int), 1, fnew);
fwrite((void *) &mfl,sizeof(float),l, fnew);
fclose (fnew) ;

}

break;
/* PROJECT 2 RETRIVAL FROM DISK */
case 2:
filelist (); /* calls function to list all *.prf files */

/* user can look at list and enter file name */
printf("\n\n:> Enter project filename: ");
scanf ("%s", &sfname2) ;

/* if name of file is mis-entered program goes back to */

/* main menu */

if ((fin = fopen (fname2, "rb"))==NULL)

{ .
fprintf (stderr, "Unable to open file %s to read\n", fname2);
continue;

}

/* read in the data of the selected filename */

fread((void *) DSMI2, 26 * sizeof(float),l,fin);

fread((void *) KDSI2,sizeof(int),1,fin);

fread((void *) &results2{3),sizeof(float),1,fin);

fread((void *) cdrate2,15 * sizeof (float),1l,fin);

fread((void *) PCNT2,3 * sizeof(float),l,fin);

fread ((void *) &mode2,sizeof(int),1, fin);

fread ({(void *) &mf2,sizeof (float),1l,fin);

136

fclose(fin);

/* re-intialize */

donel = 0;
project2 = 1;

/* function described above which allows user to display */

/* on screen the variables for the simulation model less */

/* the COCOMO variables */

model in(DSMI2,PCNT2,KDSI2, results2,mode2,
fname2, EAF2, cdrate2,donel, mf2);

if (results2[3]==1.00)
{
clrscr(); /* gives user option to continue */
/* using basic model or use intermediate */
gel3 = wn_popup(0, 5, 10, 50, 10, wat, bat, &intelc2l, TRUE);
switch(sel3)
{

case 1: /* user selected basic model */
basic = 1;
initial (cdrate2); /* Basic model EAF values must */
break; /* all be 1.00. This sets all */
/* cost drivers to 1.00 */

case 2: /* user selected intermediate model */
basic = 0;

initial (cdrate2);
/* Displays cost driver screen; allows user to */
/* set cost drivers to desired level */
icocomo_in(cdrate2, EAF2,done3, fname2) ;
break;
} /* switch sel3 */
} /% if */
else /* if EAF is other than 1.00 */
{
/* displays cost drivers values and */
/* allows user to manipulate */
basic = 0;
icocomo_in{cdrate2, EAF2,done3, fname?2) ;
}

clrscr();

/* pop-up menu for user to select COCOMC mode */
mode2 = wn_popup (0, 5, 10, 50, 10, wat, bat, &intelc20, TRUE);

switch (mode2)
{

case 1: /* Organic mode */
if (basic != 1)
{
mf2 = 3.2; /* sets coefficient and exponents */
}
else

{
}

expl = 1.05; /* for man-days calculation */
exp2 = 0.38;

/* function that actually does the COCOMO calculations */
calc(results2,KDSI2,EAF2,cdrate2, mf2, expl, exp2);

break:
case 2: /* Semi-detached mode */

mf2 = 2.4;

137

mf2 = 3.0;
expl = 1.12;
exp2 = 0.35;
| calc(results2,KDSI2,EAF2,cdrate2, mf2, expl, exp2);
break;
case 3: /* Embedded mode */
if (basic I!= 1)
{
mf2 = 3.6; /* sets coefficient and exponents */
}
else
{
mf2 = 2.8;

expl = 1.20;
expl2 = 0.32;
calc(results2,KDSI2,EAF2,cdrate2, mf2, expl, exp2) ;
break;

} /* switch mode */

/* allows user to save current datafile under the same name */
/* or save the same or manipulated data under a new name */
sel4 = wn_popup(0, S5, 10, 55, 10, wat, bat, &intelc22, TRUE);

switch (seld)
{
case 1: /* save in same file */
file save (DSMIZ2,cdrate2,PCNT2, fname2,
results2([3],KDSI2, mode2, mf2) ;
break;
case 2: /* if you are changing the name of the file */
clrscr();
gotoxy{12,10); /* enter new name */
printf("Enter the new project filename: ");
scanf ("%s",&string);

/* Program lets user enter more than 8 characters */
/* for filename. Thig copies first 8 characters */
/* into nem filename variable */
strncpy (newname, string, 8);
string{8) = "\0’; /* resets string to null */
strcat (newname, ".prf"); /* automatically adds ".prf" */

/* writes new file to disk */

fnew2 = fopen (newname, "wb") ;
fwrite ((void *) DSMI2,26 * sizeof (float),1l, fnew?);
fwrite ((void *) KDSI2,sizeof(int),1, fnew2);
fwrite ((void *) &results2[3],sizeof(float),l, fnew2);
fwrite ((void *) cdratel2,15 * sizeof(float),l, fnew2);
fwrite ((void *) PCNT2,3 * sizeof(float),1l, fnew2);
fwrite((void *) &mode2, sizeocf(int),1l, fnewl);
fwrite ((void *) &mf2, sizeof(float),1, fnew2);
fclose (fnew2) ;

}

break;

/* RUNS TWO PROJECT DYNAMIC SIMULATION */
case 3:

/* This is an error checking routine to ensure */
/* both projects are loaded before executing the */

138

/* simulation model */
if (projectl) /* projectl is a flag */
/* when 1 projectl is loaded */
/* when 0 projectl is not loaded */

if (project2) /> project2 is a flag */
/* when 1 project2 is loaded */
/* when 0 projectl is not loaded */
{
/* Both projects are loaded, save files and execute simulation */
doneS = 1;
done6 = 1;
file pass(results{0],results2([0],results[1],
results2[1l],KDSI,KDSI2,DSMI,DSMI2,PCNT,PCNT2) ;
}
else
{
/* Only project 1 is loaded, will not proceed */
clrscr();
gotoxy (10,10) ;
printf ("You have not selected Project 2.\n");
gotoxy (10,11) ;
printf ("Both projects must be selected to
simulation.\n");
gotoxy (10,15);
printf ("Press any key to continue......... \n") ;
getch();
}
}
else
{
if (project2)
{
/* Only project 2 is loaded, will not proceed */
clrscr();
gotoxy (10,10);
printf ("You have not selected Project 1.\n");
gotoxy (10,11) ;
printf ("Both projects must be selected to
simulation.\n");
gotoxy (10,15) ;
printf ("Press any key to continue......... \n");
getch();

else
/* Neither project is loaded, will not proceed */

clrscr();
gotoxy(10,10);

run

run

printf ("You have not selected Project 1 or Project 2.\n");

gotoxy (10,11);
printf ("Both projects must be selected to
simulation.\n");
gotoxy (10, 15);
printf("Press any key to continue......... \n") ;
getch();
}
}
break;

/* EXITS CURRENT MENU TO PREVIQUS MENU (INITIAL MENU) */

139

run

case 4:
doneS = 1;
done6 = (;
break;
)} /* sel2 */
} /* while doneS5 */
break;

/* CREATE NEW PROJECT FILES AND EXECUTE SIMULATION MODEL WHEN COMPLETE */
case 2:

wn_init (); /* initialize a window for text entry */

wd = wn open(0,5,10,58,10,wat,bat); /* open window wd4; similar */

N /* to opening a file */

/* 5 is starting row; 10 is starting column; 58 is characters wide */
/* gecond 12 is number of rows; wat is the window attribute and */
/* bat the boarder attribute */

if('wd) exit (1) ;

\n * ek Rk Kk Aok kok ok ok ok ok ok Kk kokk IMPORTANT ********************\n"),-

\n\n In order to load NEW projects you must enter\n");

input data for both COCOMO and the Dynamic Simulation.\n");

There are two forms on which all data must be entered.\n");

Please enter the data as accurately as possible.\n\n\n\n");
Press [ANY KEY] to continue...™");

wn printf (w4,
wn printf (w4,
wn_printf (w4,
wn_printf (w4,
wn_printf (w4,
wn_printf (w4,

32 3 3 3 3 3

v_getch();
wn_close (wd) ;
done7=0;
while ('done?7)
{
clrscr();
/* Pop-up window for New Project selection */
sel6é = wn popup(0, 5, 15, 55, 10, wat, bat, &intelc25, TRUE);
switch(sel®6)
{
/* NEW PROJECT 1 ENTRIES */
case 1:

/* This function allows user to enter simulation variables */
/* into two arrays for project 1 */
dsm_in (DSMI, PCNT) ;

/* This function allows user to enter COCOMO variables */
/* into an array and name the new projectl file */
como_in (KDSI, fnamel) ;

clrscr();
sell = wn popup(0, 5, 15, 55, 10, wat, bat, &intelcl9, TRUE);
- /* selection of basic or intermediate COCOMO */
switch(sell)
{
case 1: /* user selection basic */
basic = 1;
EAF1{0] = 1.00;/* initializes schedule percent to 100 */

initial (cdrate); /* sets all cost drivers to nominal */
break;

~ase 2: /* user selection intermediate */
basic = 0;
dene3 = 0O;
EAF1({0] = 1.00;/* initializes schedule percent to 100 *’
initial (cdrate); /* gets all cost drivers to nominal */

140

icocomo_in(cdrate,EAF1l,done3, fnamel); /* allows user to set */
/* cost driver values */
break;

clrscr();

mode = wn popup(0, 5, 10, 50, 10, wat, bat, &intelc20, TRUE);
/* select a mode */

switch (mode)

{

case 1: /* Organic */
if (basic != 1)
{
mfl = 3.2; /* sets coefficient and exponents */
}
else
{
mfl = 2.4;
}
expl = 1.05; /* for man-days calculation */
exp2 = 0.38;

/* calls function to do COCOMO calculations */
calc(results,KDSI,EAFl,cdrate,mfl,expl, exp2);

break;

case 2: /* Semi-detached */
mfl = 3.0;
expl = 1.12;

exp2 = 0.35;
/* calls function to do COCOMO calculations */
calc(results,KDSI,EAF]l, cdrate,mfl, expl,exp2);

break;
case 3: /* Embedded */
if (basic '= 1)
{
mfl = 3.6; /* sets coefficient and exponents */
}
else
{
mfl = 2.8;

}
expl = 1.20;
exp2 = 0.32;
/* calls function to do COCOMO calculations */
calc(results,KDSI,EAFl, cdrate,mfl, expl, exp2);
break;
}
/* calls function to do nominal productivity calculations */
/* results[0]=Total man~days; results[2]=schedule in months */
DSMI 23] = prod(PCNT,results[0]}, results[2],KDSI);

/* display/edit simulation model inputs */
model in (DSMI,PCNT,KDSI, results,mode,
fnamel, EAFl, cdrate, donel,mfl) ;

/* save updated file automatically */
file save(DSMI,cdrate,PCNT, fnamel, results([3],KDSI,mcde, mfl);

projectl = 1; /* Flag when equal to 1 indicates prujectl
loaded */

/* this ends the input phase and initial COCOMO

141

calculations */
/* for projectl the user will return to menu to select new */
/* project2, to Display/Edit or to run simulation model */
break;

/* NEW PROJECT 2 ENTRIES */
case 2:

/* This function allows user to enter simulation variables */
/* into two arrays for project 2 */
dsm_in (DSMIZ2, PCNT2) ;

/* This function allows user to enter COCOMO variables */
/* into an array and name the new project2 file */
como_in (KDSI2, fname2) ;

clrscr ()

sell = wn_popup (0, 5, 15, 55, 10, wat, bat, &intelcl9, TRUE);
/* selection of basic or intermediate COCOMO */

switch(sell)

{

case 1: /* user selection basic */
basic = 1;
EAF2[0] = 1.00;/* initializes schedule percent to 100 */
initial (cdrate2); /* sets all cost drivers to nominal */
break;
case 2: /* user selection intermediate */
basic = 0;
done3 = 0 ;
EAF2([0] = 1.00; /* initializes gchedule percent to 100 */

initial (cdrate2); /* sets all cost drivers to nominal */
icocomo in(cdrate2,EAF2,done3, fname2);/* allows user to set */
- /* cost driver values */
break;
}

clrscr();

mode2 = wn_popup(0, 5, 10, 50, 10, wat, bat, &intelc20, TRUE);
/* select a mode */
switch (mode2)

{

case 1: /* Organic */
if (basic !'= 1)
{
mf2 = 3.2; /* sets coefficient and exponents */
}
else

expl = 1.05; /* for man-days calculation */
exp2 = 0.38;

/* calls function to do COCOMO calculations */
calc(results2,KDSI2,EAF2, cdrate2, mf2, expl, exp2);

break;

case 2: /* Semi-detached */
mf2 = 3.0;
expl = 1.12;

exp2 = 0.35;
/* calls function to do COCOMO calculations */
calc(results?2,KDSI2,EAF2,cdrate2, mf2, expl, exp2);

142

TRUE) ;

break;

case 3: /* Embedded */
if (basic '= 1)
{
mf2 = 3.6; /* sets coefficient and exponents */
}
else
{
mf2 = 2.8;
}
expl = 1.20;
exp2 = 0.32;

/* calls function to do COCOMO calculations */
calc(results2,KDSIZ,EAF2,cdrate2,mf2, expl, exp2);
break;

}

/* calls function to do nominal productivity calculations */
/* results2[0]=Total man-days; results2[2]=schedule in months */
DSMI2([23] = prod(PCNT2, results2([0]}, results2([2],KDSI2);

/* display/edit simulation model inputs */
model in(DSMIZ,PCNT2,KD3I2, results2,model,
fname?2, EAF2, cdrate2, donel, mf2) ;

/* save updated file automatically */
file save (DSMIZ,cdrate2,PCNT2, fnameZ2,
results2(3],KDSI2, mode2,mf2) ;

project2 = 1; /* Flag when equal to 1 indicates project2
loaded */

/* this ends the input phase and initial COCOMO

calculations */
/* for project2 the user will return to menu to select new */
/* projectl, to Display/Edit or to run simulation model */
break;

/* GO TO NEXT LEVEL MENU TO DISPLAY PROJECTS OR RUN SIMULATION */
case 3:

done = 0;
while (!done) /* New Project Menu loop */
{

clrscr();

sel5 = wn_pcpup(0, 5, 10, 50, 10, wat, bat, &intelc23, TRUE):
/* New Project Menu */

switch (sel5)

{
case 1: /* user selected Display/Edit project 1*/

/* display or edit simulation model inputs */
model in(DSMI,PCNT,KDSI, results,mode,
fnamel, EAF1, cdrate,donel,mfl) ;

if(results([3]==1.00) /* checks if EAF = 1.00 */
{

clrscr();/* gives user option to continue */
/* using basic model or use intermediate */

sel3 = wn_popup(0, 5, 10, 50, 10, wat, bat, &intelc2l,

143

switch (sel3)

{

case 1: /* user selected basic model */

basic = 1;

initial (cdrate);/* Basic model EAF values must */

break; /* all be 1.00. This sets all */

/* cost drivers to 1.00 */

case 2: /* user selected intermediate model */
basic = 0;

initial (cdrate); /* initialize cost drivers to 2 */

/* Displays cost driver screen; allows user to */
/* set cost drivers to desired level */
icocomo_in(cdrate, EAF1l,done3, fnamel) ;

break;

} /* switch sel3 */
} /* if */
else

/* if EAF is other than 1.00 */
{
/* displays cost drivers values and */

/* allows user to manipulate */

basic = 0;

icocomo_in({(cdrate,EAFl,done3, fnamel) ;
}
clrscr();
switch (mode)/* mode at this point was previously */
/* selected and will now be routed to */
/* for proper calcualations */
{
case 1: /* Organic mode */

if (basic != 1)

Qfl = 3.2; /* sets coefficient and exponents */
élse

éfl = 2.4;

;xpl = 1.05; /* for man-days calculation */

exp2 = 0.38;

/* function that actually does the COCOMO calcuiations */
calc(results,KDSI,EAFl,cdrate, mfl, expl,expl);
break;

case 2: /* Semi-de-ached mode */
mfl = 3.0;
expl = 1.12;
exp2 = 0.35;
calc(results,KDSI,EAF1l,cdrate,mfl, expl, expl);

break;
case 3: /* Embedded mode */
if (basic '= 1)
{
mfl = 3.6; /* sets coefficient and exponents */
}
else
{
mfl = 2.8;
}
expl = 1.20;

144

}

exp2 = 0.32;
calc(results,KDSI,EAFl,cdrate,mfl, expl, exp2);
break;

/* switch mode */

/* automatically save latest changes to file */
file save (DSMI,cdrate, PCNT, fnamel, results([3],KDSI,mode, mfl) ;
break;

case 2:

/* user selected Display/Edit project 2*/

/* display or edit simulation model inputs */

model in{(DSMIZ2,PCNTZ2,KDSI2, results2,mode2, fname2, EAF2, cdrate2, donel, mf2) ;

TRUE) ;

if (results2(3]==1.00) /* checks if EAF = 1.00 */

{

}

clrscr();
/* gives user option to continue */
/* using basic model or use intermediate */

sel3 = wn_popup(0, 5, 10, 50, 10, wat, bat, &intelc2l,

switch(sel3)
{

case 1: /* user se’ected basic model */
basic = 1;
initial (cdrate2); /* Basic model EAF values must*/

break; /* all be 1.00. This sets all */
/* cost drivers to 1.00 */
case 2: /* user selected intermediate model */

basic = 0;

initial (cdrate2);

/* Displays cost driver screen;
allows user to */

/* set cost drivers to desired level */
icocomo_in(cdrate2, EAF2,done3, fname2) ;
break;

} /* switch sel3 */

/* if */

else /* if EAF is other than 1.00 */

{

}

/* displays cost drivers values and */
/* allows user to manipulate */

basic = 0;
icocomo_in(cdrate2, EAF2, done3, fname?l) ;

clrscr();
switch (mode2)

{

case 1: /* Organic mode */
if (basic !'= 1)
{
mf2 = 3.2; /* sets coefficient and expcnents */
}
else
{
mf2 = 2.4;

}
expl = 1.05; /* for man-days calculation */

exp2 = 0.38;
/* function that actually does the COCOMO
calculations */

145

function */

*/

simulation.\n");

calc(results2,KDSI2,EAFZ,
cdrate2,mf2, expl,exp2);

break;
case 2: /* Semi-detached mode */
mf2 = 3.0;
expl = 1.12;
exp2 = 0.35;

calc (results2,KDSI2,EAF2,
cdrate2,mf2,expl, exp2);

break;
case 3: /* Embedded mode */
if (basic != 1)
{
mf2 = 3,2; /* sets coefficient and exponents */
}
else
{
mf2 = 2.4;
}
expl = 1.20;
exps = 0.32;

calc(results2,KDSI2,EAF2,
cdrate2,mf2,expl,exp2) ;
break;
} /* switch mode */
/* automatically save latest changes to file */
file_ save (DSMIZ, cdrate2,PCNTZ,
fname2, results2(3],KDSI2,mode2, mf2);

break;

case 3: /* user selected to run simulation model */
if (projectl) /* 1f TRUE project 1 data is entered */
{

if (project2) /* If TRUE project 2 data is entered */
{
done = 1; /* allows user to exit to initial menu */
done6é = 1;/* allows user to exit out of program */
done?7 = 1;
/* calls file pass which outputs both SIMTWO.DNX */
/* and OUTFILE2.DNX. After completion of t h i s

/* exit program to DOS which calls Simulation Model

file pass(results(0],results2([0],results(l],
results2([1],KDSI,KDSI2,DSMI,DSMI2,
PCNT, PCNT2) ;
}
else /* Project 1 is entered but project 2 is not */
{
/* prints message to screen */
clrscr () ;
gotoxy (10,10);
printf ("You have not selected
Project 2.\n");

gotoxy (10,11);

printf ("Both projects must be selected t o r u n

gotoxy (10,15);

printf ("Press any key to continue......... \n") ;
getch () ;

}

146

else /* projectl not loaded */
{
if (project2) /* If TRUE */
/* Project 2 is entered but project 1 is not */
{
/* prints message to screen */
clrscr():;
gotoxy (10,10);
printf ("You have not selected
Project 1.\n"):
gotoxy (10,11);
printf ("Both projects must be selected t o
simulation.\n");
gotoxy (10,15) ;
printf ("Press any key to continue......... \n"™);
getch();
}
else /* neither project is loaded */
{
/* prints message to screen */
clrscr();
gotoxy (10,10) ;
printf ("You have not selected
Project 1 or Project 2.\n");
gotoxy (10,11) ;
printf ("Both projects must be selected t o
simulation.\n");
gotoxy (10,15);

printf ("Press any key to continue......... \n");
getch();
}
}
break;
case 4:
done = 1; /* allows user to exit program */
done7 = 1;
break;
}
}
break;
}
} /* while done?7 */
break;
case 3:
exit(l); /* Exits program to DOS command line */
} /* sel */

} /* while done6 */
exit (0); /* Exits program and returns back to DOS batch file.
}

/* THE END of this program not project */

}

147

/*
/*
/*
/*
/*

/*
/*
/*
/ir
/*

/*
/t

APPENDIX E

IEEEEERSSEEE S22 2R R Xs R s Rt Rttt s A R 8 8 2 2 X 4

* Author: Richard W. Smith Advisor: Prof. Abdel-Hamid *
* Program: OUTPUT2 Lang: C
* Used Shareware <windows.h> in project environment *

AARXAREAKEAARAKRRRAA AR ARRAAARAAAAAAARARAAAA AL A AR A AR A A AR Ak hhdkkkkk

This is one of 5 programs written and interfaced with the */
Dynamic Simulation Model. This particular program gathers

*/
*/
* */
*/
*/

*/
outfile information from several files to generate reports */

and create an iterative loop environment for studying refinement */

of cost estimation. */

The following headers were used and needed to utilize the */
library functions used throughout this program. */

#include <stdio.h>
#include <math.h>
#include <conio.h>

void file pas(float *,float *,int *,int *,float *,float *,float *,float *,int);
float prod(float, float, float,int *);

float interp(float);

void cktwo(float, float, float, float,float, float, float *);
void passtwo (float, float, float, float, float, float);

/*
/*
/*
/*
/*

This function provides the avenue to interface the output */

variables from this program into the simulation model via a */
text file and pass certain other variables back to the OUTPUT2 */
program via a binary file for reporting estimates aad actual */

results and error rates. */

void file pas(float *TVALS, float *TVALSZ,int *KDSI,int *KDSIZ, float *DSMI, float
*DSMIZ, float *factor,float *factorZ,int loop_lim)

{

FILE *fpout, *textfile;

/* need to change to long, once multiplied by 1000 */
/* size could be out of integer range. */

long 11,12;

11 = KDSI(0])*1000.0;

12 = KDSI2({0]*1000.0;

/* input file to simulation model */
textfile = fopen ("SIMTWO.DNX","w");

fprintf (textfile, "C RJBDSI (1)=%1ld\n", 11):
fprintf (textfile,"C RJBDSI (2)=%1ld\n", 12);
fprintf (textfile, "C TOTMD1 (1)=%5.0£\n", TVALS{0]):
fprintf (textfile, "C TOTMD1 (2)=%5.0£\n", TVALS2(0]):
fprintf (textfile, "C TDEV1(1l)=%5.0£f\n", TVALS[1]
fprintf (textfile, "C TDEV1(2)=%5.0f\n", TVALS2(1
fprintf (textfile,"C INUDST(1)=%5.2f\n", DSMI[0]
fprintf (textfile, "C INUDST (2)=%5.2f\n", DSMI2[O
fprintf(textfile, "C ADMPPS(1l)=%5.2f\n", DSMI[1]

’

1)
0]
)
1
)
1)
)

148

fprintf (textfile, "C
fprintf (textfile, "C
fprint £ (textfile, "C
fprintf (textfile, "C
fprintf (textfile, "C
fprintf (textfile, "C
fprintf (textfile, "C
fprintf (textfile, "C
fprintf (textfile, "C

ADMPPS (2) =%5
HIREDY (1) =%5

AVEMPT (1) =%5
AVEMPT (2) =%5

TRPNHR (1) =%5.
TRPNHR (2) =%5.
ASIMDY (1) =%5.
.2f\n",

ASIMDY (2) =%5

.2f\n",
.2f\n",
HIREDY (2) =%5.
.2f\n",
.2f\n",

2f\n",

2f\n",
2f\n",
2f\n",

DSMI2([1}):;
DSMI[2]):;
DSMI2[2]);
DSMI[3]):
DSMI2{3]);
DSMI{4]);
DSMI2([4])
DSMI([5]}):
DSMI2({5]):

r

fprintf (textfile,"T TNERP1=%5.2f %5.2f %5.2f %5.2f %5.2f %5.2f\n",
DSMI([6],DSMI[7},DSMI(8],DSMI([(9],DSMI{10],DSMI[11});
fprintf (textfile,"T TNERP2=%5.2f %5.2f %5.2f %5.2f %5.2f
DSMI2[6],DSMI2([7),DSMI2(8],DSMI2[9],DSMI2({10],DSMI2[11]);
fprintf (textfile, "T TPFMQl=%5.3f $5.3f %5.3f %5.3f %5.3f %5.3f %5.3f
%5.3f %5.3f %5.3f O0\n", DSMI(12},DSMI[13],DSMI[14],DSMI[15],
DSMI({16],DSMI([17],DSMI[18),DSMI[19],DSMI{20]),DSMI[21]);
fprintf (textfile, "T TPFMQ2=%5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f
$5.3f %5.3f %5.3f O\n", DSMI2{12],DSMI2[13],DSMI2[14],
DSMI2({15),DSMI2({16],DSMI2(17],DSMI2[18]},DSMI2[19],
DSMI2([20],DSMI2(21)):
fprintf (textfile, "C DEVPRT(1)=%5.2f\n", DSMI(22]):;
fprintf (textfile, "C DEVPRT(2)=%5.2f\n", DSMI2[22]):
fprintf(textfile, "C DSIPTK(1l)=%5.2f\n", DSMI[23]);
fprintf (textfile, "C DSIPTK(2)=%5.2£f\n", DSMI2[23]):
fprintf (textfile,"C STRIDT(1)=%5.2£\n", factor[5]);
fprintf (textfile, "C STRIDT (2)=%5.2f\n", factor2(3]):
fprintf (textfile, "C NCLTWF=%5.2f\n", factor[6]):
fclose (textfile);

%$5.2f\n",

/* Binary output file for use by output2 */

if ((fpout = fopen("outfile2.dnx", "wb"))==NULL)
{
fprintf (stderr, "Unable to open file %s \n", "outfileZ.dnx"):
}
else
{
fwrite((void *) DSMI,26 * sizeof (flocat),l, fpout);
fwrite ((void *) DSMIZ, 26 * sizeof(float),l, fpout);
fwrite((void *) KDSI,2 * sizeof(int),1, fpout):
fwrite ((void *) KDSIZ2,2 * sizeof{int),1, fpout);
fwrite ((void *) TVALS,2 * sizeof(float), 1, fpout);
fwrite((void *) TVALS2,2 * sizeof(float),1, fpout);
fwrite ((void *) factor,7 * sizeof (float),1, fpout);
fwrite((void *) factor2,4 * sizeof(float),l,fpout);
fwrite ((void *) &loop_lim, gizeof(int),1, fpout);
fclose (fpout) ;
}

This function does the Nominal Productivity calculations */
TOTMD1 - Effort passed from main function in man-days */

TDEV2 - Schedule in months not days! */

PCNT - array from main function which passes %Testing, QA */
and %Rework for man-days */

MM - Effort in man-months */

stf size - Average Staff Size = MM/TDEV2 */
DEVMD - Development man-days */

ADP - Actual Development Productivity */
covhd - Communication Overhead */

149

/* product - Nominal Productivity */

float prod(float pcnt,float TOTMD1, float TDEVZ,int *KDSI)
{

float MM, stf size,DEVMD,ADP, covhd;

float product;

MM = TOTMD1/19;

stf size = MM/TDEV2;

DEVMD = (1 - pcnt) *TOTMD1;

ADP = (KDSI[{0] * 1000.0)/DEVMD;

covhd = interp(stf size); /* call interpolation function */

product = ADP/(0.6 * (1.0-covhd));
return product;

}

/* Part of the calculation for Nominal Productivity requires */
/* interpolation. This function accepts staff size variable */

/* and returns communication overhead factor for use in determining */

/* Nominal Productivity. */
float interp(float stf_ size)
(float covhd;
if ({(stf_size >= 0) && (stf_size <= 5))
{ covhd = (((stf_size-0)* .015)/5);
if ((stf _size > 5) && (stf_size <= 10)})
covhd = (((stf_size-5)* .045)/5) +.015;
if ((stf_size > 10) && (stf size <= 15))
covhd = (((stf_size-10)* .075)/5) + .06;
if ((stf_size > 15) && (stf_size <= 20))
covhd = (((stf_size-15)* .105)/5) + .135;
if ((stf_size > 20) && (stf_size <= 25))
covhd = (((stf_size-20)* .135)/5) + .24;
if ((stf size > 25) && (stf size <= 30))
covhd = (((stf_size-25)* .165)/5) + .375;
if (stf _size >= 30)
covhd = .54;
Leturn covhd;

}

/* This function checks Project 2 error rates to determine if */
/* error rates are within limits. Only called if Project 1 */

/* meets its error rate requirements. Otherwise goes to passtwo */

150

void cktwo{float TOTMD2, float TDEVZ, float md2,float time2, float oldprod, float
newprod, float *factor)

{

PERCENT

ERROR

float diff,diffl;

int num;

FILE *results;

if (TOTMDZ2 >= md2) /* checks if effort estimates are greater */

{

/* than actuals */

if (TDEV2 >= time2) /* checks if sked estimates are greater */
/* than actuals */ -
{
diff = (TOTMD2-md2) /md2; /* error rate for effort */
diffl = (TDEV2-time2)/time2;/* error rate for sked */
results = fopen ("REPORT,QUT","a"); /* open file */
fprintf (results, "\n PERCENT
PRODUCTIVITY\n");
fprintf (results, "TOTMD2 CcCUMMD 2 ERROR TDEV2 TIMEZ2
OLD NEW\n") ;

fprintf (results, "$6.0f %6.0f %6.2f $6.0f %6.0f $6.2¢F

$6.2f %6.2f\n", TOTMD2,md2,diff,

TDEV2,time2,diffl, oldprod, newprod) ;
fclose (results);

/* check to see if error rates meet requiremnets */
if ((diff == 0 && diffl <= factor(4]) ||

(diff <= factor (3] && diffl == 0) ||

(diff <= factor([3] && diffl <= factor([4]))
{
/* opens results file to print out at bottom of */
/* report.out a reminder of availability of */
/* output data */

results = fopen ("REPORT.OUT", "a");
fprintf (results, "\n\n**** This data is available i n

REPORT .QUT ****\n");

fprintf (results,"**** FEach time the model is run

REPORT.OUT will change ***#*\n");

fclose (results);

/* sets cursor at (col,row) */
/* Format for output of data */

gotoxy(10,10);

printf (" REPORT FORMAT CHOICE\n");
gotoxy (10,12);

printf (" 1 - Display results\n");
gotoxy(10,13);

printf (" 2 - Print results\n");
gotoxy (10, 14);

printf (" 3 - Exit\n");

gotoxy (10,16);

printf ("Enter one of the above: ");

scanf ("%d4d", &num) ;

switch (num)

{
case 1:
clrscr();

151

exit (4) ; /* sends to screen wvia DOS */

case 2:

clrscr():

exit (3); /* sends to printer via DOS */
case 3:

exit (0); /* exits program, but output */

/* still available in report.out file */

}
else /* case for effort estimate > actual, but sked */
/* actual > estimate */
{
diff = (TOTMD2-md2)/md2; /* error rate for effort */
diffl = (time2-TDEV2)/time2; /* error rate for sked */
/* open output file */
results = fopen ("REPORT.OUT", "a");
fprintf (results, "\n PERCENT
PERCENT PRODUCTIVITY\n"):;
fprintf (results, "TOTMD2 CUMMD 2 ERROR TDEV2
ERROR OLD NEW\n") ;

TIMEZ2

fprintf (results, "$6.0f %6.0f %6.2f $6.0f %6.0f %6.2f %6.2f

%$6.2£\n", TOTMD2, md2, diff,
TDEV2,time2,diffl, oldprod, newprod) ;
fclose (results);

/* check to see if error rates meet requiremnets */
if ((diff == (Q && diffl <= factor[4]) ||

(diff <= factor([3] && diffl == 0) ||

(diff <= factor([3] && diffl <= factor(4]))
{
/* opens results file to print cut at bottom of */
/* report.out a reminder of availability of */
/* output data */

results = fopen("REPORT.OUT", "a");

fprintf (results, "\n\n**** This data is available i

REPORT .QUT ****\n");

n

fprintf (results, "**** Each time the model is run REPORT.OUT

will change ****\n");
fclose (results);

/* sets cursor at (col,row) */
/* Format for output of data */
gotoxy (10,10);

print £ (" REPORT FORMAT CHOICE\n");
gotoxy (10,12);

print £ (" 1 - Display results\n");
gotoxy (10,13);

printf (" 2 - Print results\n");
gotoxy (10,14);

print £ (" 3 - Exit\n");

gotoxy (10,16);

printf ("Enter one of the above: ");

scanf ("%d4", &num) ;

switch (num)
{
case 1:
clrscr();
exit (4); /* sends to screen via DOS */
case 2:

152

clrscr ()
exit (3); /* sends to printer via DOS */
case 3:
exit (0); /* exits program, but output */
/* still available in report.out file */

}
else /* actual effort is > estimate effort */
{
if (TDEV2 >= timeZ2) /* checks if sked estimates
are greater */
/* than actuals */

diff = (md2-TOTMD2)/md2; /* error rate for effort */

diffl = (TDEV2-time2)/time2; /* error rate for sked */

/* open output file */

results = fopen ("REPORT.QOUT", "a");

fprint £ (results, "\n PERCENT
PERCENT PRODUCTIVITY\n");

fprintf (results, "TOTMD2 CUMMD 2 ERROR TDEV2 TIME2

OLD NEW\n") ;

fprintf(results,"%$6.0f %6.0f %6.2f $6.0f %6.0f %6.2f

%$6.2f\n", TOTMD2, md2,diff,
TDEVZ, timeZ2,diffl, oldprod, newprod) ;
fclose (results);

/* check to see if error rates meet requiremnets */
if ((diff == 0 && diffl <= factor(4]) 1|

(diff <= factor([3] && diffl == 0) ||

(diff <= factor[3] && diffl <= factor[4]))
{
/* opens results file to print out at bottom of */
/* report.out a reminder of availability of */
/* output data */

results = fopen ("REPORT.OUT", "a");

fprintf (results, "\n\n**** This data is available i

REPORT.QUT **xxx\qnn) .

fprintf (results, "**** Each time the model is run REPOPT.OUT

will change ****\n"),;
fclose (results);

/* sets cursor at (col,row) */
/* Format for output of data */
gotoxy (10,10);

printf (" REPORT FORMAT CHOICE\n");
gotoxy (10,12) ;

printf (" 1 -~ Display results\n");
gotoxy (10,13);

printf (" 2 ~ Print results\n");
gotoxy (10,14) ;

print £ (" 3 ~ Exit\n®);

gotoxy (10,16);

printf ("Enter one of the above: ");

scanf ("%d", &énum) ;

switch (num)

{
case 1:
clrscr():

153

ERROR

%6.2f

n

exit (4); /* sends to screen via DOS */

case 2:

clrscr () ;
exit(3); /* sends to printer via DOS */
case 3:

exit (0); /* exits program, but ocutput */
/* still available in report.out file */

}
else /* actual effort and actual sked are > estimates */
{
diff = (md2-TOTMD2)/md2; /* error rate for effort */
diffl = (time2-TDEV2)/time2; /* error rate for sked */
/* open file */
results = fopen("REPORT.OUT", "a");
fprintf (results, "\n PERCENT
PERCENT PRODUCTIVITY\n")
fprintf(results,"TOTMD2 CUMMD 2 ERROR TDEV2 TIMEZ2 ERROR
OLD NEW\n") ;
fprintf (results, "%$6.0f %6.0f %6.2f %6.0f %6.0f %6.2f %6.2f
%6.2£\n", TOTMD2,md2,dif¥f,
TDEVZ, time2,diffl, oldprod, newprod);
fclose (results);
/* check to see if error rates meet requiremnets */
if ((diff == 0 && diffl <= factor[4]) 1|
(diff <= factor[3] && diffl == 0) ||
(diff <= factor([3] && diffl <= factor([4]))
{
/* opens results file to print out at bottom of */
/* report.out a reminder of availability of */
/* output data */
results = fopen ("REPORT.OUT","a");
fprintf (results, "\n\n**** This data is available i n
REPORT.QUT ****\nw) .,
fprintf (results, "**** Fach time the model is run REPCRT.OUT
will change ****\n");
fclose (results);

/* sets cursor at (col,row) */
/* Format for output of data */
gotoxy (10,10);

printf (" REPORT FORMAT CHOICE\n"):
gotoxy (10,12);

print£(" 1 - Display results\n");
gotoxy (10,13) ;

print £ (" 2 - Print results\n");
gotoxy (10, 14);

printf (" 3 - Exit\n");

gotoxy (10,16) ;

printf ("Enter one of the above: ");

scanf ("%d", &num) ;

switch (num)
{

case 1:
clrscr ()
exit (4); /* sends to screen via DOS */
case 2:
clrscr();
exit (3); /* sends to printer via DOS */

154

case 3:
exit (0); /* exits program, but output */
/* still available in report.out file */

}

/* This function checks Project 2 error rates to determine if */

/* error rates are within limits. Only called if P-oject 1 */

/* does not meet its error rate requirements. Does not exit program */
/* from this function */

void passtwo(float TOTMDZ2, float TDEVZ, float md2, float time2, float oldprod, float

newprod)

{
float diff,diffl;
FILE *results;

if (TOTMD2 >= md2) /* checks if effort estimates are greater */
{ /* than actuals */

1f (TDEV2 >= timel) /* checks if sked estimates are greater */
{ /* thanu actuals */

diff = (TOTMDZ2-md2)/md2; /* error rate for effort */
diffl = (TDEV2-time2)/time2; /* error rate for sked */
results = fopen ("REPORT.OUT", "a");
fprintf (results, "\n PERCENT
PERCENT PRODUCTIVITY\n")
fprintf (results, "TOTMDZ2 CUMMD 2 ERROR TDEV2 TIME2 ERROR

OLD NEW\n") ;
fprintf (results,"%$6.0f %6.0f %6.2f $6.0f %6.0f %6.2f %6.2f
%6.2f\n", TOTMD2, md2,diff,
TDEVZ2,time2,diffl,oldprod, newprod) ;
fclose (results);
}
else /* effort estimate > actual, but sked actual > estimate */
{
diff = (TOTMD2-md2) /md2; /* error rate for effort */
diffl = (time2-TDEV2)/time2; /* error rate for sked */
results = fopen ("REPORT.OUT",6 "a");
fprintf (results, "\n PERCENT
PERCENT PRODUCTIVITY\n");
fprintf (results, "TOTMD?2 CUMMD2 ERROR TDEV2 TIMEZ ERROR
OLD NEW\Nn") ;
fprintf (results, "%6.0f %6.0f %6.2f $6.0f %$6.0f %6.2f %6.2f
%6.2f\n", TOTMD2,md2, diff,
) TDEVZ, time2,diffl, oldprod, newprod) ;
fclose(results);

}
else /* effort actual > estimate */

{
if (TDEV2 »= timel) /* checks if sked estimates are greater */

{ /* than actuals */

diff = (md2-TOTMDZ2) /md2; /* error rate for effort */
diffl = (TDEV2-time2)/time2;/* error rate for sked */

155

results = fopen("REPORT.QUT", "a");
fprint £ (results, "\n PERCENT

PERCENT PRODUCTIVITY\n");

fprintf (results, "TOTMD2 CUMMD2 ERROR TDEV2 TIME2
OLD NEW\n") ;
fprintf (results, "%6.0f %6.0f %6.2f %$6.0f %6.0f %6.2f

$6.2f\n", TOTMD2, md2, diff,

TDEVZ2,time2,diffl,oldprod, newprod) ;
fclose (results);

}
else /* actuals for effort and sked are > estimates */

diff = (md2-TOTMD2)/md2; /* error rate for effort */
diffl = (time2-TDEV2)/time2;/* error rate for sked */
results = fopen ("REPORT.OUT", "a");

fprintf (results, "\n . PERCENT

PERCENT PRODUCTIVITY\n");

fprintf (results, "TOTMD2 CUMMD 2 ERROR TDEV2 TIME2
OLD NEW\n") ;
fprintf (results,"%$6.0f %6.0f %6.2f %6.0f %6.0f %6.2f

$6.2f\n", TOTMD2,md2,diff,

TDEVZ2,time2,diffl,oldprod, newprod) ;
fclose (results);

void main (void)

(

/* Declarations for variables used within this program */

int i, k=0, m=0, n=0, p=0, KDSI{2], KDSI2[2];

int count=0, loop_lim, num;

float j, md, time, TOTMD1l, TDEV1l, DSMI[26], diff, diffl, pcnt;
float md2, time2, TOTMD2Z, TDEV2, DSMI2[26], diff2, diff3, pcnt2;
float oldprod, newprod,oldprod2, newprod2;

float TVALS[2]),TVALS2(2], factor([7], factor2[4];

char string(12], string2[12], strng{l2], strng2[12];

cuar dest [(12], destl[12], dest2{12], dest3[12];

FILE *fpin, *fdata, *results;

/* initializes the all of the destination strings as null */
for (i=0;i<12;i++)
{

dest [i] = \0'";
destl[i] = "\Q’;
dest2(i]) = "\0’;
dest3{i] = '\Q’;
stringfi] . = ’\0’;
string2([i] = "\0’;
strng[i) = "\0';
strng2{i] = "\0’;

}

/* Read the outfile.dnx: Binary file used in reporting */
/* Easier to work with binary in this case */

if ((fdata = fopen("outfilel.dnx","rb"))==NULL)
{

156

ERROR

%6.2f

ERROR

%6.2f

fprintf (stderr, "Unable to open file %s \n","outfile2.dnx");
}
else
{
fread((void *) DSMI,26 * sizeof(float),1l, fdata);
fread ((void *) DSMI2,26 * sizeof (float), 1, fdata);
fread((void *) KDSI,2 * sizeof(int),1l, fdata);
fread ((void *) KDSI2,2 * sizeof(int),1l, fdata):;
fread((void *) TVALS,2 * sizeof(flocat),l,fdata):;
fread((void *) TVALS2,2 * sizeof(float),l,fdata);
fread((void *) factor,7 * sizeof (float),l,fdata);
fread((void *) factor2,4 * sizeof(float),1l, fdata);
fread((void *) &loop_lim,sizeof(int),1, fdata);
fclose (fdata) ;
}

fpin = fopen("SIMIWO.OUT","r"); /* get output from simulation */
/* Project 1 */
/* GET EFFORT VALUE FROM SIMULATION OUTPUT FIL. */
i = fgetc(fpin); /* get first character from output file */

while (i !'= 40) /* continue getting characters until ascii */
/* #40 ' (71 */
{
1 = fgetc(fpin);
}
1 = fgetc (fpin);
while (i '= 41) /* now get each char and save as string */
{
stringlk] = 1i;
k++; /* £ill up string project 1 effort */
i = fgetc(fpin);

}
string{k]="\0";
i = fgetc(fpin);

/* GET EFFORT VALUE FROM SIMULATION OUTPUT FILE */
while (i '= 40)
{
i = fgetc(fpin);
}
i = fgetc(fpin);
while (i !'= 41) /* continue getting characters until ascii */
/* #40 7 (7 */
{
string2[m] = i;
mt+; /* £ill up string project 2 effort */
1 = fgetc(fpin);
}
string2[m] = ’\0’;
i = fgetc(fpin);

/* GET SCHEDULE VALUE FROM SIMULATION OUTPUT FILE */
while (1 !'= 40) /* continue getting characters until ascii */
/* #40 ' (7 */
{
i = fgetc(fpin);
}
i = fjetc(fpin);
while (i !'= 41) /* continue getting characters until ascii */

157

/* #41 7)1 */

strngin] = i;
n++; /* £ill up string project 1 sked */
i = fgetc(fpin);

}

strng[n] = '\0’; /* null */

i = fgetc(fpin);
/* GET SCHEDULE VALUE FROM SIMULATION OUTPUT FILE */

while (i != 40) /* continue getting characters until ascii */
/* #40 ' (1 */

(e

i = fgetc (fpin);
1
i = fgetc{fpin);
while (i !'= 41) /* continue getting characters until ascii */

/* #41)" x/

{

strng2{p] = 1i;

p++; /* £ill up string project 2 sked */

i = fgetc(fpin);
}
strng2{p] = ‘\0’;
fclose (fpin);
strncpy (dest, string,k); /* copy actual proj 1 effort into dest string */
md = atof (dest); /* string to float conversion */
strncpy (destl,string2,m);/* copy actual proj 2 effort into destl string */
md2 = atof (destl); /* string to float conversion */
strncpy (dest2,strng,n); /* copy actual proj 1 sked into dest2 string */
time = atof (dest2); /* string to float conversion */
strncpy (dest3,strng2,p); /* copy actual proj 2 sked into dest3 string */
time2 = atof (dest3); /* string to float conversion */
oldprod = DSMI[23]; /* changes productivity variable name for */

oldprod2 = DSMI2(23]; /* reporting purposes */
/* Calculate the new productivity values which change dynamically */
/* with changes in effort and schedule */
DSMI[23]) = prod(factor{0},md, (TVALS[1]/19.0),KDSI);
DSMIZ2[23] = prod(factor2[0)},md2, (TVALS2([1]/19.0),KDSI2);
count = KDSI[1]; /* counter initialization */
while {count != loop_ lim) /* checks to see if count equals the */
{ /* limit on number of loops */
/* loop_lim is inouted directly by user */
if (TVALS(0] >= md) /* checks if proj 1 effort estimates are */ ,

{ . /* greater than actuals */

if (TVALS[1] >= time) /* checks if proj 1 sked estimates are */
{ /* greater than actuals */

diff = (TVALS([0]-md)/md; /* calc error rates for efiort */
diffl = (TVAL3(1l])-time)/time; ,/* calc error rates for sked */
results = fopen ("REPORT.QUT", "a");

/* output format */

158

fprintf (results, ™"\n PERCENT
PERCENT PRODUCTIVITY\n");

fprint f (results, "TOTMD1 CuMMD1 ERROR TDEV1 TIME1 ERROR

OLD NEW\n") ;

fprintf (results,"%$6.0f %6.0f %6.2f %$6.0f %6.0f %6.2f %6.2f

%6.2f\n", TVALS[0],md,dif£,
TVALS (1] ,time,diffl,oldprod,DSMI(23]);
fclose (results);

/* check to see if error rates meet requiremnets */
1f ((diff == 0 &% diffl <= factor[4]) 1|

(diff <= factor(3] && diffl == Q) ||

(diff <= factor([3] && diffl <= factor[4]))

/* if it meets requirements go to cktwo to check proj 2 */
cktwo (TVALS2[0], TVALS2[1],md2,
time2,oldprod2,DSMI2([23], factor);
}
else
{
/* if it meets requirements go to passtwo to check proj 2 */
passtwo (TVALS2([0]),TVALS2([1l},md2,
time2, o0ldprod2,DSMI2[23]);

}
else /* effort estimates > actuals and */
{ /* sked actuals > estimates */

diff = (TVALS{[0]-md) /md; /* calc error rates for effort */
diffl = (time-TVALS([1l])/time; /* calc error rates for sked */
results = fopen ("REPORT.OUT","a");

/* output format */

fprintf (results, "\n PERCENT
PERCENT PRODUCTIVITY\n");

fprintf (results, "TOTMD1 CUMMD1 ERROR TDEV1 TIME1l R

QLD NEW\n") ;

fprintf (results, "%6.0f %6.0f %6.2€ $6.0f %6.0f %6.2f %6.2f

%$6.2f\n", TVALS{0],md, diff,
TVALS{1l],time,diffl,oldprod,DSMI[23]);
fclose (results);

/* check to see if error rates meet requiremnets */
if ((diff == 0 && diffl <= factor(4}) ||

(diff <= factor([3] && diffl == 0) ||

(diff <= factor(3] && diffl <= factor([4]))

/* if it meets requirements go to cktwo to check proj 2 */
cktwo (TVALS2 (0], TVALS2{1],md2,
timeZ2, oldprod2,DSM12[23], factor);
}
else
{
/* if it meets requirements go to passtwo to check proj 2 */
passtwo (TVALS2([0], TVALS2{1],md2,
time2, oldprod2,DSMI2([23]);

}
else /* effort actuals > estimates */
{

159

if (TVALS{1l] >= time) /* checks if proj 1 sked estimates are */
{ /* greater than actuals */

diff = (md-TVALS(0])/md; /* calc error rates for effort */
diffl = (TVALS[l]-time)/time; /* calc error rates for sked */
results = fopen ("REPORT.OUT", "a");

/* output format */
fprintf (results, "\n PERCENT
PERCENT PRODUCTIVITY\n"):;

fprintf (results, "TOTMD1 cCuMMD1 ERROR TDEV1 TIME1 ERR
OLD NEW\n") ;

fprintf (results, "%6.2f %6.0f %6.2f $6.0f %6.0f %6.2f %6.2f
$6.2f\n",TVALS[0] ,md,diff, TVALS[1],

time,diffl,oldprod,DSMI[23]);
fclose (results);

/* check to see if error rates meet requiremnets */
if ((diff == 0 && diffl <= factor[4]) ||
(diff <= factor[3] && diffl == Q) ||
(diff <= factor([3] && diffl <= factor(4]))

/* if it meets requirements go to cktwo to check proj 2 */
cktwo (TVALS2 [0}, TVALS2[1],md2,
time2,o0ldprod2,DSMI2[23], factor);
}

else /* does not meet error rate requirements */

/* if it meets requirements go to passtwo to check proj 2 */
passtwo (TVALS2(0],TVALS2([1],md2,
time2, oldprod2,DSMI2[23]);

}
else /* effort and sked actuals are > estimates */

(
diff = (md-TVALS{0])/md; /* calc error rates for effort */

diffl = (time-TVALS([1])/time; /* calc error rates for sked */
results = fopen("REPORT.OUT",™a");

/* output format */
fprintf (results, "\n PERCENT
PERCENT PRODUCTIVITY\n"):;

fprintf (results, "TOTMD1 CUMMD1 ERROR TDEV1 TIME1l R
OLD NEW\L™ ;

fprintf(results,"$6.0f %6.0f %6.2f $6.0f %6.0f %6.2f 6.2
%6.2f\n", TVALS (0], md,dif€f,

TVALS(1l],time,diffl, oldprod,DSMI[23]);
fclose (results);

/* check to see if error rates meet requiremnets */
if ((diff == 0 && diffl <= factor(4]) ||
(diff <= factor{3] && diffl == Q) ||

(diff <= factnonr(3] && diffl <= factor(4]))

/* if it meets requirements go to cktwo to check proj 2 */

cktwo (TVALS2([0]),TVALS2[1],md2,
time2, oldprod2,DSMI2 (23}, factor);

else

160

}

{
/* if it meets requirements go to passtwo to check proj 2 */
passtwo (TVALS2[0],TVALS2{1l],md2,
time2, oldprod2,DSMI2[23]);

count ++; /* counts number of loops or iterations */

KDSI[1] = count:; /* re-sets counter number for next run */

KDSI2[1l] = count;

TVALS[{0] = md*factor[l]: /* adjusts effort updates for proj 1 */
TVALS[1] = time*factor(2]; /* adjusts sked updates for proj 1 */
TVALS2[0] = md2*factor2{l]; /* adjusts effort updates for proj 2 */
TVALS2([1l) = time2*factor2{2); /* adjusts sked updates for proj 2 */

file pas(TYALS,TVALSZ2,KDSI,KDSI2,DSMI,DSMI2, factor, factor2,loop lim);

/* checks lecop lim against count to see if done */

if (cHount != loop_lim)
{
exit (1); /* exits program for next iteration */
}
else /* count equaled loop_lim and is ready to exit program */

{

/* orens results file to print out at bottom of */
/* report.out a reminder of availability of */

/* <

utput data */

resuli:s = fopen ("REPORT.OUT", "a");
fprintf (results, "\n\n**** This data is available in REPORT.QUT *#***\n");
fpriatf (results,"**** FEach time the model is run REPORT.OUT will change

xxxaAn") ;

fclo-2(results):
b} /7 if */
} /* whi'e */

/* sets ciursor at (col,row) */

/* Format

ror output of data */

gotoxy (1C.10) ;

printf ("

gotoxy (10

print€("

REPORT FORMAT CHOICE\n");
12);
1 - Display results\n");

gotoxy (1C.13);

printf ("

2 - Print results\n");

gotoxy (10, 14) ;

printf ("

3 - Exit\n");

gotoxy(10,16) ;
printf ("Enter one of the above: ");
scanf ("%d", &num) ;

switch (num)

{

case 1:

clrscr():
exit (4); /* sends to screen via DOS */

case 2:

clrscr();
exit (3); /* sends to printer via DOS */

case 3:

161

exit (0); /* exits program, but output */
/* still available in report.out file */

}

/* end program */

162

LIST OF REFERENCES

ABDEL-HAMID, T. K. AND S. E. MADNICK, "Lessons Learned from
Modeling the Dynamics of Software Development, " Communications
of the ACM, 32, 12, December (1989), 1426-1438.

ABDEL-HAMID, T. K. AND S. E. MADNICK, Software Proiject
Dynamics: An _Integrated Approach, Prentice—-Hall, Inc.,
Englewood Cliffs, New Jersey, 1991.

ABDEL-HAMID, T. K. AND S. E. MADNICK, Software Development
Dynamics: An Integrated Approach, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1990.

AGAN, C. E., Coupling Artificial Inteligence and a System
Dynamics Simulation to Optimize Quality Assurance and Testing
in Software Development, Thesis, Naval Postgraduate School,
1990.

BOEHM, B. W., "Improving Software Productivity," Computer
(September 1987), 43-57. , Survey & Tutorial Series.
BOEHM, B. W., "Software Engineering Economics," IEEE

Transactions on Software Engineering, SE-10, 1, January
(1984), 4-21.

BOEHM, B. W., Software Engineering Economics, ed. R. T. Yeh,,
Pretntice-Hall, Inc., Englewood Cliffs, New Jersey, 1981.

GHEZZ2I, C., M. JAZAYERI, AND D. MANDRIOLI, Fundamentals of
Software Engineering, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1991.

KITFIELD, J., "Is Software DOD’s Achillies’ Heel?," Military
Forum (July 1989), 28-35.

PRESSMAN, R. S., Software Engineering: A Practitioner’s
Approach, 2nd ed., Series in Software Engineering and
Technology, McGraw-Hill, Inc., 1987.

SCHLENDER, B. R., "How to Break the Software Logjam," Fortune
(25 September 1989), 100-112.

UNITED STATES. CONGRESS. HOUSE. COMMITTEE ON GOVERNMENT
OPERATIONS, DOD Automated Systems Experience Runaway Costs and
Years of Schedule Delays While Providing Little Capability,
H.Rept 382, 101st Cong., 1lst sess., GPO, Washington, DC, 1989.

163

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

Dr. Tarek K. Abdel-Hamid, Code AS/AH
Department of Administrative Sciences
Naval Postgraduate School

Monterey, CA 93943-5000

Dr. Magdi Kamel, Code AS/KA
Department of Administrative Sciences
Naval Postgraduate School

Monterey, CA 93943-5000

CDR T. J. Hoskins
Computer Technology (37)
Naval Postgraduate School
Monterey, CA 93943-5000

LT Richard W. Smith

1841 Dellwood Dr.
Norfolk, VA 23518

164

